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1. Greeting

Warm greetings to all members, partners, and investors at DES X
. Exchange.

We greet you with hope and excitement as we join you at DES X
- a pioneering and groundbreaking Decentralized Exchange.



We live in an era full of challenges as well as opportunities.
Financial values are undergoing a dramatic transformation, and
DES X was born as a powerful attempt to reshape the way we
think about trading, investing, and creating value. To provide a
transparent, fair, and secure trading environment, DES X is
committed to bringing innovation and significant difference.

We build DES X based on advanced technology and deep
knowledge, to create a dynamic and flexible trading space.
Convenience, speed, and accessibility are our strengths, enabling
investors and market participants to make the most of every
opportunity.

We know that the success of DES X cannot be achieved without
the contribution and support of all members. With unanimous
participation, we can build a solid and prosperous community,
where creativity and possibilities for growth are unlimited.

We are pleased to welcome you into DES X, where innovation,
interaction, and value creation are at the heart. Let's give wings to
a bright and sustainable financial future.

2. DES-X - Decentralized Finance
Platform With Comprehensive
Advantages

Welcome to the DES-X Exchange, which has everything you need
to participate in the decentralized finance revolution. With a
unique combination of trading, optimization, aggregation, market
value, security, connectivity, privacy, visibility, distributed
security, and community value, DES-X delivers a whole new
experience for participants.
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Trading: Explore the Modern World of Trading.

DES-X is a promising cryptocurrency trading platform that allows
you to participate in the rapidly growing market with modern and
quality trading tools.

Optimization: Leveraging the Benefits of Performance
Optimization

With DES-X, you not only trade but also optimize the performance
of your mining equipment, helping you get the most out of your
cryptocurrency mining.

General: Connecting With Different Exchanges.



The aggregation of information from different exchanges helps
you to track and manage your assets easily and efficiently.

Market Value: Understanding and Capitalizing on Market
Volatility.

DES-X gives you access to up-to-date market value information,
helping you make smart trading decisions and predict market
trends.

Privacy: Protect Your Privacy.
Privacy 1s a priority at DES-X, helping you to engage in
cryptocurrency trading and mining safely and securely.

Connect Trade Anytime, Anywhere.

With DES-X, you can connect and trade cryptocurrencies anytime,
anywhere, via mobile devices or personal computers.

Security: Protect Your Property and Data.

DES-X is committed to ensuring the security of assets and data
during trading and mining.

Display: Easy Monitoring And Management.
Thanks to the intuitive information display, you can track and
manage your assets easily and efficiently.

Distribution Security: Securing the Distribution Process.
DES-X ensures safety and transparency in the distribution of
cryptocurrencies, ensuring that all transactions are carried out
securely.

Community Values: Joining and Contributing to the
Financial Future.

By participating in DES-X, you contribute to building a free
financial environment
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3. What is DES-X?

Welcome to the world of DES X - a state-of-the-art Decentralized
Exchange System (DeS-X) set to revolutionize the cryptocurrency
trading landscape. In this article, we will dive into the innovative
features and benefits offered by the DES X platform, highlighting
how DeS-X technology is changing the way users securely trade
cryptocurrencies. and easy.

3.1: Learn about DES X - DeS-X Technology.

A brief overview of the DES X platform and its core principles.

Explanation of DeS-X technology, highlighting the decentralized
nature of the exchange and no intermediaries.

Discuss the advantages of DeS-X, such as enhanced security,
privacy, and money control.



3.2: Seamless Transactions on DES X.

User-friendly interface and easy navigation for both beginners and
experienced traders.

Integrate with popular wallets for convenient transaction and fund
management.

Fulfill orders in a peer-to-peer manner for fast and efficient
transactions.
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3.3: Security measures and reliable transactions.

Smart contract technology ensures safe and reliable transactions
without depending on third parties.

User funds protection mechanism to protect against potential
vulnerabilities.

Eliminates a single point of failure, minimizing the risk of hacking
or system crashes.



3.4: Advanced trading features.

Advanced charting and analysis tools for comprehensive market
analysis.

Limits and market orders for flexible trading strategies.

Automated trading options for algorithmic traders.

3.5: Liquidity on DES X.

How DES X addresses the liquidity challenges that decentralized
exchanges often face.

Incentives for liquidity providers to foster a vibrant trading
ecosystem.

Integrate with other liquidity pools to enhance trading options.

3.6: DES Layer - Token of the DES X . Ecosystem.

Introduction to DES. exchange, the native utility token of the DES
X platform.

Utilities and benefits of DES. exchange in the ecosystem, such as
reducing transaction fees and voting rights.

Details of the token distribution model and future plans for DES.

Conclude

The DES X platform, powered by DeS-X technology, marks an
important step towards a decentralized future for cryptocurrency
trading. By prioritizing security, user control, and a seamless
trading experience, DES X is positioning itself as a leading player
in the ever-evolving crypto exchange landscape. Embrace the
power of DES X and join the DeS-X revolution today!



4. DES stands for ""Decentralized Trust Service"'.

Decentralized: Refers to the underlying architecture of an
exchange, which operates on a decentralized network, similar to
a DEX, to provide enhanced security and user control.

Escrow Services: In the context of cryptocurrency exchanges,
escrow services ensure safe and secure money handling in peerto-
peer transactions. It acts as a trusted intermediary that holds the
funds until both parties fulfill their obligations in the transaction.

DES is a new type of cryptocurrency exchange that combines the
advantages of both centralized and decentralized exchanges while
introducing a secure escrow service to facilitate peer-topeer
transactions. It aims to provide users with a seamless and reliable
platform for trading digital assets with reduced counterparty risk
and improved transaction security. With DES, users can trade
directly with each other while enjoying the protection and trust
provided by the decentralized escrow service.

DESX TECHNOLOGY

“DECENTRALIZED TRUST SERVICE".

Discover the Revolutionary DES X
Platform: Embrace DeS-X
Technology for a Secure and
Seamless Trading Experience

MORE INFORMATION

@ CONTACT US
www.des-X.io I Hj




5. Future of Cryptocurrency Trading:
DESAdvantages over CEX and DEX.

Cryptocurrency trading has evolved over the years, with
centralized exchanges (CEX) and decentralized exchanges (DEX)
dominating the landscape. However, a new paradigm shift is
taking place with the emergence of "Decentralized Escrow
Service" (DES) exchanges. In this article, we will explore the
unique advantages of DES over CEX and DEX, focusing on
verified liquidity and enhanced protection of user funds against
potential scams.
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5.1: Verified liquidity on DES.

The DES platform uses innovative techniques to verify liquidity
and ensure a smooth trading experience.

Integrate with multiple liquidity providers and external liquidity
pools to enhance trading options.



Users can access real-time liquidity data, allowing them to make
informed trading decisions.

DES eliminates liquidity bottlenecks, promoting a dynamic and
liquid trading environment.
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5.2: Advanced User Fund Protection.

DES exchange implements advanced security measures to protect
user funds from malicious intent.

Decentralized escrow services act as a secure intermediary,
holding trust funds until trading conditions are met.

Smart contract technology ensures automatic fund release and
anti-counterfeiting after successful transaction completion.

Users have full control over their funds, minimizing the risk of
exchanges holding users' funds and facing potential scams.



5.3: Minimize the risk of running away.

Traditional CEXs can run the risk of exiting or fleeing with user
funds due to centralized control.

DEXs, while decentralized, may lack robust measures to prevent
fraudulent activities.

The DES platform creates a balance, using decentralized features
while providing the security of an escrow service.

Money is kept in smart contracts, reducing the likelihood of
malicious activities and improving user trust.

5.4: Trust and transparency.

The DES exchange prioritizes transparency, providing users with
visibility into their trading activities.

Immutable on-chain transactions allow users to track their
transactions and verify their execution.

Open source and smart contract audits ensure an extra layer of
security and trust.

5.5: Seamless peer-to-peer transactions.

DES facilitates peer-to-peer transactions without intermediaries,
enhancing privacy and control.

Users retain ownership of their private keys, eliminating the risk
of exchange custody control.

Direct transactions promote faster payments and lower transaction
fees.

Conclude

As the crypto space continues to grow, DES exchanges are
emerging as a revolutionary solution to address the shortcomings



of both CEX and DEX. Verified liquidity, enhanced protection of
user funds, and reduced risk of fraud make DES an attractive
choice for crypto traders looking for a secure, transparent and
secure trading experience. decentralized. By leveraging
decentralized escrow services, DES platforms are shaping the
future of cryptocurrency trading and empowering users to take full
control of their digital assets. As the industry adopts this
innovative approach, DES is poised to revolutionize the crypto
exchange landscape.

6. Optimize your trading.

Provide excellent service experience quickly - not as complicated
as traditional DEX solutions. Lower fees, and fast transaction
processing for absolute safety and security.

Optimize your trading
Provide excellent service experience quickly - not as

complicated as traditional DEX solutions. Lower feesfast
transaction processing for absolute safety and security.

@ Continuous integration of anti-bot technology and
absolute user protection.

@ Trading super fast, use DESX for transaction
feerefunds

@ Use Al in trading, minimizing slippage

6.1: Continuous integration of anti-bot technology and
absolute user protection.

One of the core factors that make DESX stand out is the
continuous integration of advanced anti-bot technology, along
with a natural user protection system. This ensures that every



transaction is done by real users while preventing fraudulent
activity and adversely affecting market participants

6.2: Super Fast Transactions and Transaction Fee
Refunds Through DESX.

Time is the deciding factor in trading, and DESX understands this.
The transaction speed on DESX is outstanding, helping you to
execute transactions quickly and efficiently. The special thing is
that you can refund transaction fees through the use of DESX
tokens, creating an interactive connection between the platform
and users

6.3: Use Al in trading, minimizing slippage.

With the integration of artificial intelligence (Al), DESX not only
creates a high-speed trading environment but also minimizes
slippage. The use of Al helps predict and adapt to market changes,
ensuring that you get the best price on every trade

Experience Super Fast Trading with DESX: The Perfect
Combination of Technology and Efficiency

No more delays or hassles from traditional DEX solutions, DESX
delivers the super-fast trading experience you've always come to
expect. With the unique integration of anti-bot technologies,
protect real users.

7. DESX Launchpad.

A curated token launch platform or we refer to it as a crypto
launchpad, provides investors with a secure and efficient way to
invest in promising projects and benefit from the lucrative IDO
and 1CO market.



DESX Launchpad

A curated token launch platform or we refer to it as a crypto
launchpad, provides investors with a secure and efficient way to
invest in promising projects and benefit from the lucrative IDO and
ICO market.
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7.1: Project evaluation.

The smart choice for credibility with the DESX launcher, every
project is carefully vetted before being put on the platform. This
ensures that only projects with high potential and reputation can
access capital from the investment community, creating
credibility and transparency in the investment process.

7.2: Multi-Chain Support.

Scalability and Flexible Integration The DESX launcher is not
limited by a single blockchain. The ability to support multichain
allows the platform to expand and integrate flexibly into many
different environments, making it easy for projects and investors
to access and participate.

7.3. Generate Tokens Directly from the Platform.

Friendly and Time-Saving By allowing token generation directly
from the platform, DESX brings friendliness and time-saving to
projects and investors. No need to go through complicated steps,
the token generation process becomes easy and fast.



7.4: Supporting Crypto Gaming, NFT, and Metaverse
Projects.

Investing in the Future Besides the mainstream market, DESX
also focuses on supporting promising crypto gaming, NFT, and
metaverse projects. This provides an opportunity to invest in the
future of technology and digital art, creating diversity and great
potential for the investment community.

8. FOR DEVELOPERS.

Why join the DES development team?

1.  Discover the Essence of Technology: At DES, you will have
the opportunity to study and work with the most advanced
technology in the field of decentralized trading. This not only
gives you access to fresh knowledge but also fosters creativity in
system development and optimization.

2.  Creating a New Financial Environment: By joining us, you
will contribute to building a transparent, safe, and efficient trading
environment. Your work will help create the necessary
infrastructure for future market participants.

3. Challenges and Opportunities: Joining the development
team of DES allows you to challenge and grow. You will face
complex problems, discover new solutions, and go further in your
development career.

4.  Collaborate and Learn: Our development team is not only a
workplace but also a community of collaboration and learning.



You will have the opportunity to exchange knowledge, share ideas
and learn from excellent colleagues.

FOR
DEVELOPERS

WHY JOIN THE DES DEVELOPMENT TEAM?
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How to Protect DES Against Exhaustive Key Search
(An Analysis of DESX)*

JOE KiLiant PHILLIP RoGAwAY!

February 2, 2000

Abstract

The block cipher DESX is defined by DESX 41 52(z) = k2 @ DESk(k1 & z), where & de-
notes hitwise exclusive-or. This construction was first suggested by Rivest as a computationally-
cheap way to protect DES against exhaustive key-search attacks. This paper proves, in a formal
model, that the DESX construction is sound. We show that, when F is an idealized block
cipher, FXy g1 52(2) = k2 & Fy (k1 & z) is substantially more resistant to key search than is F.
In fact, our analysis says that FX has an effective key length of at least K + n — 1 — Igm bits,
where & is the key length of F, n is the block length, and m bounds the number of (z, FX k(z))
pairs the adversary can obtain.

Key words: DESX, DES, Key search, Cryptanalysis, Export controls.

1 Introduction

With its 56-bit keys, the susceptibility of DES to exhaustive key search has been a concern and a
complaint since the cipher was first made public; see, for example, [6]. The problem has escalated
to the point that the Electronic Frontier Foundation has now built a DES cracking machine, at a
cost of less than 250,000 USD, that can find the right key in about three days.

There have been many approaches suggested for reducing DES’s vulnerability to exhaustive key
search. One is to construct a DES-based block cipher which employs a longer key. Triple DES
(typically in “EDE mode”) is the best-known algorithm in this vein. It seems to be quite se-
cure, but efficiency considerations make triple DES a rather painful way to solve the exhaustive
key-search problem. Specifically, triple-DES encryption/decryption requires multiple DES encryp-
tions/decryptions. This paper analyzes a much cheaper alternative.

Rivest [13] proposes an extension of DES, called DESX, defined by
DESX s1.40(2) = k2 ® DES; (k1 @ ).

*An earlier version of this paper appears in [11].

" NEC Research Institute, 4 Independence Way, Princeton, NJ 08540, USA. E-mail: joe@research.nj.nec.com

! Department of Computer Science, University of California at Davis, Davis, CA 95616, USA. E-
mail: rogaway@cs.ucdavis.edu



The key K = k.k1.k2 (here, . denotes concatenation) is now 56 + 64 + 64 = 184 bits. Compatibility
with DES is maintained by setting k1 = k2 = 05, Existing DES CBC hardware can be gainfully
employed by first masking the plaintext, computing the DES CBC, and then masking the ciphertext.
Most significantly, DESX has hardly any computational overhead over ordinary DES. Yet, somehow,
DESX seems no longer susceptible to brute-force attacks of anything near 2% time.

It is unintuitive that one should be able to substantially increase the difficulty of key search by
something as simple as a couple of XORs. Yet working with the DESX definition for a while will
convince the reader that undoing their effect is not so easy.

Does the “DESX trick”™ really work to improve the strength of DES against exhaustive key search?
We give a strong positive result showing that it does.

1.1 Our model

Key-search strategies disregard the algebraic or cryptanalytic specifics of a cipher and instead
treat it as a black-box transformation. Key-search strategies can be quite sophisticated; recent
work by [16] is an example. We want a model generous enough to permit sophisticated key-search
strategies, but restricted enough to permit only strategies that should be regarded as key search.
We accomplish this as follows.

Let & be the key length for a block cipher and let n be its block length. We model an ideal
block cipher with these parameters as a random map F : {0,1}" x {0,1}" — {0,1}" subject to
the constraint that, for every key & € {0,1}*, F(k,-) is a permutation on {0,1}". A key-search
adversary A is an algorithm that is given the following two oracles:

e An F oracle that on input (k,z) returns F(k,z) and

o An F~' oracle that on input (k,y) returns F~'(k,y).

Here, F~'(k,y) denotes the unique point z such that F(k,z) = v.

A generic key-search adversary tries to perform some cryptanalytic task (to be specified) that
depends on F. She may perform arbitrary computations, using unbounded amounts of time and
space, but her only access to F is via the F/F~! oracles. We analyze the adversary’s rate of
success in performing her cryptanalytic task as a function of the number of accesses she makes to
the F/F~" oracles.

To apply the above framework to DESX, we first generalize the DESX construction. Given any
block cipher F' we define FX : {0,1}72% x {0,1}" — {0,1}" by
FX(k.k1.k2, ) =k2 & F(k,kl1 & z).

For both F and FX we shall sometimes write their first argument (the key) as a subscript, Fi.(z)
and FX g (z), where K = k.k1.k2. In this notation, F may be thought of as a permutation chosen
from a family of (random) permutations that is indexed by k.

To investigate the strength of FX against key search we consider a generic key-search adversary A
with oracles for ' and F~', and determine how well A can play the following “FX-or-r" game.



A is given an “encryption oracle” F that has been randomly chosen in one of two ways (each with
probability 0.5):

o A string K € {0,1}"%" is chosen at random and E(z) = FX g(z), or

¢ A random permutation 7 : {0,1}" — {0,1}" is selected and E(z) = n(z).

A must guess which way F was chosen. The adversary “wins” the game if it guesses correctly with
probability significantly greater than 0.5. The FX construction “works™ if the resources needed to
do a good job in winning the above game are substantially greater than the resources that suffice
to break F.

As an example of a generic key-search attack, consider the weakened form of DESX, denoted
DESW, in which k; is always set to 0/F1/; that is,

DESW. so(z) = k2 @ DESk(x).

It is possible to mount a generic key-search attack DESW as follows. Given k and DESW . ., (z)
for an arbitrary z, one can compute ky = DESWy 1, (z) @ DES(z). Thus, one can go through all
possible keys k, compute the full key k.ko, and test with high confidence whether k.ks is correct
(given values of DESy ,(y) for a couple of random y-values). Hence, DESW is no stronger than
DES against generic key-search attacks. Similarly, if ko is always set to 02/, there is no significant
improvement over DES, as long as two or three plaintext-ciphertext pairs are known. (There may be
marginal benefits if only a single plaintext-ciphertext pair is known, or for ciphertext-only attacks,
but these are comparatively small improvements.) It is the combination of the two XOR operations
that give DESX its superior resistance to generic key-search attacks.

1.2 Our main result

We show that if generic key-search adversary A can make only a “reasonable” number to queries
to her encryption oracle E, then A must ask an excessive number of F/F~! queries in the FX-
or-7 game, and therefore A must run for an excessively long time. More specifically, we prove the
following. Let m bound the number of (z, FX g (z)) pairs that the adversary can obtain. (This
number is usually under the control of the security architect, not the adversary.) Suppose the
adversary makes at most ¢ queries to her F/F~! oracles. (This number is usually under the control
of the adversary, not the security architect.) Then the adversary’s advantage over random guessing
(i.e., the difference between its success and failure probabilities) in winning the FX-or-n game is
at most mt-27*""+1, In other words, the adversary’s advantage is at most ¢- 2% "+1+8m g4 the
effective key length of FX, with respect to key search, is at least £ +n — 1 —lgm bits.

To understand the above formula, consider a block cipher F' with 55-bit keys and a 64-bit block
size.! Suppose key-search adversary A attacks FX and in the course of attack able to obtain up to
m = 2% blocks of enciphered data. Suppose A runs in time at most T. Then A has advantage of
at most 7'+ 27556443041 — 7. 9-88 {4 just guess whether the enciphered data really was produced
by FX, and not a random permutation. A more detailed discussion of out main theorem is given
in Section 4.

' Why we use 55 and not 56 is explained in the discussion in Section 4.



Because our main result indicates the infeasibility of key search even when we ignore the adver-
sary’s space requirement, this “omission™ only strengthens what we are saying. Similarly, “good”
adversaries may, necessarily, use an amount of time, T, which far exceeds their number of F/F~!
queries, . So focusing on the query complexity makes our results all the more meaningful. Likewise,
the weakness of the adversary’s goal only strengthens the lower bound.

1.3 Related work

Even and Mansour [8] construct a block cipher PX : {0,1}*" x {0,1}" — {0,1}" from a random
permutation P : {0,1}" — {0,1}" by PXjy4o(z) = k2 @ P(k1 @ z). Clearly this is a special case
of the FX construction, where x = (. While their motivation for looking at PX was quite different
from our reasons to investigate FX, our model and methods are, in fact, quite similar. Our main
result can be seen as a natural extension of their work.

The modeling of a block cipher by a family of random permutations has its roots in [15].

Ron Rivest invented DESX by May of 1984, but never described the scheme in any conference or
journal paper [13]. DESX was implemented within products of RSA Data Security, Inc., and is de-

scribed in the documentation for these products [14]. DESX has also been described at conferences
organized by RSA DSI, including [18].

Encryption methods similar to DESX have been invented independently. Blaze [3] describes a
DES mode of operation in which the ith block of plaintext, z;, is encrypted using 112-bit key k.k1
by Ejpi(zi) = s; ® DESg(s; @ ), where s;59--- is a stream of bits generated from k1 by, say,

&= DESS]) (09). Here DES® denotes the i-th iterate of DES.

Many authors have suggested methods to increase the strength of DES by changing its internal
structure. Biham and Biryukov [1] give ways to modify DES to use key-dependent S-boxes. Their
suggestions improve the cipher’s strength against differential, linear, and improved Davies” attacks,
as well as exhaustive key search. Ciphers constructed using their ideas can exploit existing hardware
exactly in those cases where the hardware allows the user to substitute his own S-boxes in place of
the standard ones.

1.4 Discussion

UNDERSTANDING OUR RESULT. It may be hard to understand the ramifications of our main
theorem, thinking it means more or less than it does. DES, of course, is not a family of random
permutations, and we can not conclude from our theorem that there does not exist a reasonable
machine M which breaks DESX in say, 2°° steps, given just a handful of (plaintext, ciphertext)
pairs. What we can say is that such a machine would have to exploit structural properties of DES;
it couldn’t get away with treating DES as a black-box transformation. This contrasts with the sort
of machines which have been suggested in the past for doing brute-force attack: they do treat the
underlying cipher as a black-box transformation.

We note that while remarkable theoretical progress has been made on the linear and differential
cryptanalysis of DES (see [2, 12]), thus far these attacks require an impractically large number of
plaintext-ciphertext pairs. To date, the only published practical attacks against DES remain of
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the key-search variety. The DESX construction was not intended to improve the strength of DES
against differential or linear attack, or any other attack which exploits structural properties of DES,
and our theorem does not say anything about its resistance to these attacks.

ON EXPORT CONTROLS TIED TO KEY LENGTH. Our results indicate how algorithmically trivial it
can be to obtain extra bits of strength against exhaustive key-search attacks. The impact of these
extra bits can be especially dramatic when the key length of the block cipher had been intentionally
made short.

Consider a block cipher F with a 40-bit key and a 64-bit plaintext. (Some products using such block
ciphers have been granted U.S. export approval.) With these parameters, our results guarantee an
effective key length (with respect to exhaustive key search) of at least 404+64—1—Igm = 103—1gm
bits. Under the reasonable assumption that m < 2%, say, the 40-bit block cipher has been modified,
with two XORs, to a new block cipher which needs at least 27-time for key exhaustive key search.

Allowing weak cryptography to be exported and strong cryptography not to be is a policy which
can only make sense when it is impractical, for the given system, to replace the weak mechanism
by a strong one. Our results indicate that this impracticality must cover algorithmic changes that
are particularly trivial.

1.5 Outline of the paper

In Section 2 we define some basic notation and define what comprises a successful attack in our
model. In Section 3 we state and prove our main theorem on the security of the DESX construction.
Section 4 is a discussion. Section 5 demonstrates that the analysis underlying our main result is
tight. In Section 6 we give some conclusions and open questions.

2 Preliminaries

Let P, denote the space of all (2")! permutations on n-bits.

We say that F : {0, 1} x {0,1}" = {0,1}" is a block cipher if for every k € {0,1}", F(k,-) € P,.
We define Fy. by F(z) = F(k,z). Let By, denote the space of all block ciphers with parameters
k and n as above.

Given F € By, we define the block cipher F~! € B, ,, by F~'(k,y) = F'(y) for k € {0,1}". We
interchangeably write F~ Yy) and F~'(k,y).

Given F € By, we define the block cipher FX € By yonn by FX(K,z) = k2 @ Fj.(k1 @ ), where
K = k.k1.k2, |k| = £ and |k1| = |k2| = n. We interchangeably write FX x(z) and FX(K,z).

Given a partially defined function F' from a subset of {0, 1} to a subset of {0,1}" we denote the
domain and range of F by Dom(F) and Range(F), and define Dom(F) = {0,1}" — Dom(F) and
Range(F) = {0,1}" — Range(F).

We denote by z & S the act of choosing z uniformly from S. We denote by Pr [Ars A9} .. B
the probability of event E after performing actions Ay, Ag,. ...




Definition 2.1 A generic key-search adversary is an algorithm A with access to three oracles, E,
F and F~'. Thus, A may make queries of the form E(P), Fi(z) or F',L,“l(y). An (m,t) generic
key-search adversary is a key-search adversary that makes m queries to the E oracle and a total of
t queries to the F and F~' oracles.

For brevity, we will sometimes drop “generic” from our terminology. Note that A supplies the value
i ; 5 F, F-1

of k as part of its queries to the F and F~! oracles. We denote by A > ™" the adversary A

interacting with oracles E, F and F~".

We now define what it means for a generic key-search adversary A to have an attack of a certain
specified effectiveness. We begin by choosing a random block cipher F' having k-bit keys and n-bit
blocks. This means that we select a random permutation Fj .3 P, for each s-bit key k. Thus
each F}. is chosen independently of each Fj/, for k # k'. Then we give A three oracles, E, F and
F~'. The F and F~! oracles compute their respective functions. The encryptions oracle E, on
input z, either computes FX g (z) for a random (& + 2n)-bit key K or computes (z), for a random
permutation 7 & P,. The adversary’s job is to guess which type of encryption oracle she has.
Our convention is that A outputs a 1 to guess that the encryption oracle is computing FX g (z).
The adversary’s advantage is her probability of guessing right, normalized to a [—1,1] scale: —1
indicates a strategy that always guesses wrong; 1 indicates a strategy that always guesses correctly;
guessing at random, or always guessing the same way, will give an advantage of 0.

Definition 2.2 Let k,n > 0 be integers, and let € > 0 be a real number. Generic key-search
adversary A is said to e-break the FX -scheme with parameters s, n if

AdVA ‘Iéf Pr [F (i BK,"; K (ﬂ {0,1}K+2": AFX"" F, F-1 _ l] B

Pr [F('R—Bx,n; W(-)E-Pnl AN F, P~ =1]
> €.

The above definition uses a very liberal notion of adversarial success. We are not demanding that,
say, A recover K; nor do we ask A to decrypt a random FX g (z) or to produce a not-yet-asked
(z, FX i(x)) pair. Instead, we only ask A to make a good guess as to whether the {plaintext,
ciphertext) pairs she has been receiving really are FX-encryptions, as opposed to random nonsense
unrelated to F. The liberal notion of success is chosen to make our main result stronger: an
adversary’s inability to succeed becomes all the more meaningful.

3 Security of the DESX Construction
We now prove a bound on the security of FX against generic key-search attacks.

Theorem 3.1 Let A be an (m,t) generic key-search adversary that e-breaks the FX -scheme with
parameters k,n. Then ¢ <mt - 275"+,



Proof: Before going into the detailed formal proof, we first give some intuition for why the proof
works. Clearly, the FX construction is highly nonrandom if one makes all possible queries to the
E,F and F~! oracles. However, to defeat the adversary it suffices if the answers to its relatively few
queries are random. For intuition, we erroneously think of F' as a family of random functions (the
formal analysis takes into account the fact that Fj is a permutation). We conceptually view F as
undefined; as queries from the adversary come in we choose values of Fj.(z) at random. Note that
queries to FE(z) implicitly make queries to F. If in computing F(z) we make a “fresh” query to F
(one that hasn't been made before), we generate a fresh answer that is random and independent of
the entire history of the attack. This fresh randomness ensures that the resulting value of E(xz) will
be random. However, randomness cannot be guaranteed when new queries depend on previously
determined values. We show that if the adversary doesn’t make many queries, then these bad
events happen with low probability.

By a standard argument we may assume that A is deterministic (note that A may be computation-
ally unbounded).? We may also assume that A always asks exactly m queries of her first oracle,
which we shall call her E-oracle. (In the experiment that defines A’s advantage, E was instantiated
by either an FX g-oracle or a m-oracle.) We may assume that A always asks exactly ¢ queries (total)
to her second and third oracles, which we shall call her F- and F~'- oracles. We may further assume
that A never repeats a query to an oracle. We may assume that if F(k,z) returns an answer v,
then there is no query (neither earlier nor later) of F~'(k,y). All of the above assumptions are
without loss of generality in the sense that it is easy to construct a new adversary, A', that obeys
the above constraints and has the same advantage as A.

We begin by considering two different games that adversary A might play. This amounts to speci-
fying how to simulate a triple of oracles, (E, F, F~'), for the benefit of A.

A FIRST GAME. The first game we consider, Game R (for “random”), will exactly correspond to
the experiment which defines the second addend in the expression for the advantage:

Pn=Pr[A"’ F. F"=1].

The definition of Game R will be defined to contain several extra (and seemingly irrelevant) steps.
These steps aren’t needed in order to behave in a manner which is identical (as far as A sees) to
the manner of behavior defining Pg; these steps are used, instead, to facilitate our analysis. To
identify these “irrelevant” instructions we put them in italics. Game R is defined in Figure 1.

Let Prg[-] denote the probability of the specified event with respect to Game R. From the definition
of Game R we can see that:

Claim 3.1 Prp [AE*F'F e 1] = B,

A SECOND GAME. Now we define a second game, Game X. It will exactly correspond to the
experiment which defines the first term in the expression for the advantage:

Px =Pr [AFX’"’ FF o],

? Roughly, given unlimited computational capabilities, A can derandomize its strategy by exhaustively searching
through its possible random choices, computing the effectiveness of the resulting attack, and then choosing the most
efficacious choice.



Game R

Initially, let F and E be undefined. Flag
bad is initially unset. Randomly choose
k* & {0,1}%, k;, k3 & {0,1}". Then answer
each query the adversary makes as follows:

On oracle query E(P):
1. Choose C' € {0,1}" uniformly from
Range(FE).

2. If Fi-(P & k) is defined, then set
bad.
If FZNC & k3) is defined, then set
bad.

3. Define E(P) = C and return C.

On oracle query Fi.(z):

1. Choose y € {0,1}" uniformly from
Range(F}.).

2. If k = k* and E(z & k}) is defined
then set bad.
Ifk=k" and E~*(y & k3) is defined
then set bad.

3. Define Fy.(z) = y and return y.

On oracle query F, k" (y):

1. Choose = € {0.1}" uniformly from
Dom(F}).

2. Ifk=k" and E™'(y @ k3) is defined
then set bad.
If k = k* and E(x @ ki) is defined
then set bad.

3. Define Fy(z) = y and return z.

Game X

Initially, let F and E be undefined. Flag
bad is initially unset.  Randomly choose
k* & {0,1}%, k3, k3 & {0,1}". Then answer
each query the adversary makes as follows:

On oracle query E(P):

1. Choose C' € {0,1}" uniformly from
Range(E).

2. If Fie(P & kY) is defined, then C +
Fi- (P& kT) & k3 and set bad.
Else if F..'(C & k3) is defined, then
set bad and goto Step 1.

3. Define E(P) = C and return C.

On oracle query F.(z):

1. Choose y € {0,1}" uniformly from
Range(F}).

2. If k = k* and E(z @ kf) is defined
then y « E(z © ki) © k3 and set
bad.

Else If k = k* and E~'(y & k3) is de-
fined then set bad and goto Step 1.

3. Define Fy(x) = y and return y.

On oracle query Fy™'(y):

1. Choose x € {0,1}" uniformly from
Dom(Fy).

2. Ifk=k* and E~'(y @ k3) is defined
then 2 « E~'(y & k3) @ ki and set
bad.

Else if k = k* and E(x @ k) is de-
fined then set bad and goto Step 1.

3. Define Fi(z) = y and return x.

Figure 1: Games R and X.



Once again, the definition of Game X will be defined to contain some “irrelevant” instructions,
which, for clarity, are indicated in italics. Game X is defined in Figure 1.

The intuition behind Game X is as follows. We #ry to behave like Game R, choosing a random
(not-yet-provided) answer for each E(P), and a random (not-yet-provided for this k) answer for
each Fi.(z), F{l(y). Usually this works fine for getting behavior which looks like the experiment
defining Px. But sometimes it doesn’t work, because an “inconsistency” would be created between
the FX-answers and the F//F~'-answers. Game X is vigilant in checking if any such inconsistencies
are being created. If it finds an inconsistency about to be created, it changes the value which it
had “wanted” to answer in order to force consistency. Whenever Game X resorts to doing this it
sets the flag bad. In the analysis, we “give up” (regard the adversary as having won) any time this
happens.

Let Prx[:| denote the probability of the specified event with respect to Game X. The definition
of Game X looks somewhat further afield from the experiment which defines Py. Nonetheless, we
claim the following:

Claim 3.2 Pry [AE-”"' = 1] = Py.

The proof of this claim is in the appendix.

BOUNDING THE ADVANTAGE BY Prp[BAD]. In either Game R or Game X, let BAD be the event
that, at some point in time, the flag bad gets set. Games R and X have been defined so as to
coincide up until event BAD. To see this, note that the corresponding oracles in these games are
identical except for, in each case, Step 2. For each pair of oracles, Step 2 executes identical tests
and based on the outcome of the test either does nothing in both cases or sets bad in both cases
(and other actions, in which the oracles will differ in their behavior). Thus, any circumstance that
causes Game R and Game X to execute different instructions will also cause both games to set
bad. The following two claims follow directly from this fact.

Claim 3.3 Pr[BAD] = Pry [BAD).
Claim 3.4 Pry [APFF" = 1BAD | =Pry [ APFF™" = 1[BAD .

What we have shown so far allows us to bound the adversary’s advantage by Prg [BAD].

Claim 3.5 Adv, < Prg[BAD].

The argument is quite simple:
Advy = Px-Pgq
= Pry [ A58 = 1] —Prg [A”-F = 1] (Claims 3.1, 3.2)
= Prx[A=1BAD|Prx [BAD] + Pry[A =1|BAD|Pry [BAD] -
Pry [A = 1[BAD|Prg [BAD | — Prg[A = 1|BAD |Pry [BAD]
Prp[BAD](Prx[A = 1|BAD] - Prz[A=1|BAD]) (Claims 3.3, 3.4)
Pri[BAD]

IA



Initially, let F and E be undefined. Answer each query the adversary makes as follows:

On oracle query E(P):

1. Choose C uniformly from Range(E).
2. Define E(P) = C and return C.

On oracle query Fy(z):

1. Choose y uniformly from Range(Fy)
2. Define Fi(z) = y and return y.

On oracle query Fi' (y):

1. Choose z uniformly from Dom(Fj).

2. Define Fi(z) =y and return z.

After all the queries have been answered:

Flag bad is initially unset.

Randomly choose k* & {0,1}%, ki, k3 & {0,1}".

If 3 @ such that Fj(x) and E(x & k) are both defined then set bad.
If 3 y such that Fk‘.l(y) and E~"(y @ k3) are both defined then set bad.

Figure 2: Game R’

A THIRD GAME. We have reduced our analysis to bounding Prg [BAD]. To bound Prg[BAD], let
us imagine playing Game R a little bit differently. Instead of choosing k*, k7, k3 at the beginning,
we choose them at the end. Then we set bad to be true or false depending on whether or not the
choice of k*, k], k5 we've just made would have caused bad to be set to true in Game R (where the
choice was made at the beginning). The new game, Game R, is described in Figure 2. From the
definition of Game R’ we see that:

Claim 3.6 Prp[BAD] = Prp [BAD].

COMPLETING THE PROOF. Now that we have sufficiently manipulated the games a simple calcula-
tion suffices to bound Prg [BAD], and, therehy, to bound Adv 4.

After having run the body of Game R’, not having yet chosen k*, kf, k3, let us simply count how
many of the 252" choices for (k*,k},k3) will result in bad getting set.

Fix any possible values for E and F which can arise in Game R'. Let |E| denote the number of
defined values E(P), and let |F| denote the number of defined values Fi.(z). Note that |E| = m
and |[F| =t. Fix F and F. Call (k*,k{,k3) collision-inducing (with respect to E and F) if there
is some defined y = Fi(z) and some defined C' = E(P) such that

k*=k and (P®ki=2 or COk; =y).
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Every choice of (k*, ki, k3) which results in setting bad is collision-inducing, so it suffices to upper
bound the number of collision-inducing (k*, k], k3).

Claim 3.7 Fiz E, F, where |E| = m and |F| = t. There are at most 2mt - 2" collision-inducing
(k*, k7, k3) € {0,1}" x {0,1}" x {0,1}".

The reason is as follows: for each defined (P, E(P)), (k,z, Fi(z)) there are at most 2 - 2" points
(k*, kT, k5) which induce a collision between these two points: they are the points (k* k], k3) €
{k} x{zx ® P} x {0,1}"} U {k} x {0,1}" x {y @ C}}. Now there are only mt pairs of such points,
so the total number of collision-inducing (k*, ki, k3) is as claimed.

Finally, in Game R' we choose a triple (k*,k},k3) at random, independent of E and F, so the
chance that the selected triple is collision-inducing (for whatever E and F have been selected) is at
most 2mf - 2% /25F21 = gt . 27K+ Pylling everything together, this probability bounds Adv 4,
and we are done. O

4 Discussion

HEALTH WARNINGS. We emphasize that when F' is a concrete block cipher, not a random one, its
internal structure can interact with the FX-construction in such a way as to obviate the construc-
tion’s benefits. As a trivial example, if F' already has the structure that it XORs plaintext and
ciphertext with key material, then doing it again is certainly of no utility.

Our model considers how much FX g looks like a random permutation (when key K is random and
unknown). Tt should be emphasized that some constructions which use block ciphers—particularly
hash function constructions —assume something more of the underlying block cipher. The current
results imply nothing about the suitability of FX in constructions which are not based on FX g
resembling a random permutation when K is random and unknown.

We also note that our analysis as stated only considers chosen-plaintext attacks and does not estab-
lish resistance to chosen-ciphertext attacks. However, it is straightforward to adapt our techniques
to analyze chosen-ciphertext attacks, as was done in [8]. To do this, provide A an oracle for FX ',
in addition to her other oracles. Now m will count the sum of the number of queries to the FX
and FX ™" oracles. Theorem 3.1 will then continue to hold. The proof changes very little.

STRUCTURE IN THE BLOCK CIPHER F WHEN F' = DES. There is one structural property of
DES which has been suggested to assist in brute-force attacks: the DES key-complementation
property. This property comprises a significant sense in which DES is not behaving like a family of
(independent) random permutations. To “factor out” the key-complementation property just think
of DES as having a single key bit fixed. Then one can conclude that if this is the only structural
property of DES to be exploited by a generic key-search attack, DESX will still limit the attack’s
advantage to tmn - 27597641 = ¢y . 27118,

SETTING k1 = k2. As mentioned in the introduction, the simpler constructions FX| (z) =
Fi(z @ k1) and FX ,‘:T: (z) = k1 @ Fi(x) don't significantly improve F's strength against generic
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key search attacks. But what about
FX} 41 (2) = k1 & Fi(z & k1)?

Is it OK to use the same key inside and out? In fact this does work, in the sense that Theorem 3.1
still goes through, the proof little changed. We analyzed the more “standard”™ general construction,
with two keys, but the more restricted choice has the advantage of a smaller key-size, with no
obvious loss of security.

NICER KEY LENGTHS. A minor inconvenience of DESX is its strange key size. In applications it
would sometimes be preferable to extend the definition of DESX to use arbitrary-length keys, or
else to use keys of some fixed but more convenient length. Standard key-separation techniques can
be used.

We give one extension of DESX to arbitrary-length keys, as follows. Let X _, denotes the first £
bits of X, let SHA-1 be the map of the NIST Secure Hash Standard, and let C, C'1 and C2 be
fixed, distinct, equal-length strings. When |K| # 184, we can define DESX(z) to be equal to
DESX . (z) where K’ is defined as follows:

o If |[K| = 56 then K’ = K.0%, 05,

k= SHA-1(C.K),_ s,
e Otherwise, K' = k.k1.k2, where ¢ k1 = SHA-1(C1.K)_g4, and
k2 = SHA-1(C2.K) g4

Note that when |K| = 56, DESX(z) = DESk(z).

DIFFERENTIAL AND LINEAR CRYPTANALYSIS. OPERATIONS BESIDES XOR. We emphasize that the
DESX construction was never intended to add strength against differential or linear cryptanalysis.
The attacks of [2, 12] do not represent a threat against DES when the cipher is prudently employed
(e.g., when a re-key is forced before an inordinate amount of text has been acted on); until these
attacks are improved, it suffices that the DESX construction does not render differential or linear
attack any easier.

Nonetheless, the proof of Theorem 3.1 goes through when @& is replaced by a variety of other
operations, and some of these alternatives may help to defeat attacks which were not addressed by
our model, including differential and linear cryptanalysis. In particular, an attractive alternative
to DESX may be the construction DESP k1.2(2) = k2 + DESi(k1 + z), where LR + L'R' =
L+L'. R+R', where |L| = |R| = |L'| = |R'| = 32 and + denotes addition modulo 2%, Burt Kaliski
has suggested such alternatives, and analyzed their security with respect to differential and linear
attacks [9].

5 Our Bound is Tight

We have shown that the adversary’s advantage is at most £ - 2~ *+1+1€™  Tyurning this around,
the adversary needs €2"t*~1=18™ queries to the F/F~! oracles to achieve an e-advantage. We
now show that for a wide range of m (comprising all m that would be considered in practice), an
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attacker can achieve an e-advantage using very close to 2°+*+1-18™ queries to the F/F~! oracles
(the exact bound is given in Corollary 5.2). This follows as a corollary of a more ambitious attack.
This attack recovers a key K’ = k'.k1'.k} that is consistent with the encryptions under FX of m
plaintexts chosen before F'/F~! oracles queries are made.

Theorem 5.1 Let m be even, m < 2" and € < % Let block cipher F be uniformly distributed
over By and let key K be uniformly distributed over {0, 1}%+2" . Then there exists an adversary
A(m,€) that initially makes m distinct queries ty, ... by, (the test set) to an oracle computing F X
Adversary A then makes

(2n+m+1—lgm +9" 4 2»:) (6 +€2)

expected queries to the F/F~' oracles. With probability at least € it returns a K' such that
FX5(t;) = FXk(t;) for 1 < 1 < m. The probability is taken over the choice of F, K and
A’s coin tosses.

It follows that our analysis is essentially tight, given our measure on the attacker’s resources, which
roughly corresponds to time. We note that in practice it is also important to consider the memory
requirements of an attack. Conceivably, there exists stronger attacks than require the same amount
of time but much less memory. However, if the time requirements are sufficiently high, the memory
issue becomes moot. However, it is an interesting open question whether imposing a reasonable
space bound can allow us to improve our time bound.

For reasonable values of m, the task performed by A(m,e) is at least as strong as simply distin-
guishing FX from a purely random permutation. To see this, consider any family of permutations
{FXk}on{0,1}", where |K| = +2n. We say that 7 is plausible if for some K, n(z;) = FXg/(z;)
for 1 <4 <m. If 7 is chosen at random, then by a simple counting argument the probability that
it is plausible is at most

2K+2n
22 —1) (2" -m+1)

p(K'a n, m‘) d’ér

For example, if & < n, n.> 20 and m > 6 then p < 10724, So an attacker who outputs a 1 iff she
finds a consistent K has an advantage of € — p(r,n,m), which is essentially €.

A minor technical point is that our lower bound considered attackers with worst-case instead
of expected case bounds. However, we can convert the expectation into a worst case bound by
observing that if an expected value is at most () then with probability % it is at most 2Q). Hence,
for € < % we can set the attacker A in Theorem 5.1 to find a consistent K with probability 2¢, and
time out if A takes more than twice its expected number of F/F~! queries. The resulting attack
uses at most

§ &£ (2n+~+2—lgm 4 gntl +2x+1) (2(-}—4(2)

IA

(21z+r:+4—]g m i 2n+3 +2x+3) P

worst-case queries to the F/F~! oracles.

Finally, since the advantage is ¢ — p(k,n,m) we can set € to be p(k,n,m) bigger than the desired
advantage, giving the following corollary.
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Corollary 5.2 Let m be even, m < 2" and ¢ < 5 — p(k,n,m). Let block cipher F be uniformly
distributed over By, key K be uniformly distributed over {0, 1}5+27 and permutation 7 be a uni-
formly distributed over P,. There exists an atlacker A(m,e) that makes m queries to oracle E
(computing either F Xy or «) and makes

(2n+x+4-lg"’ $onts 4 2"”) (€ + p(k,n,m))

queries to the F/F~' oracles. A solves the FX -or-n game with advantage at least €.

The rest of this section is devoted to the proof of Theorem 5.1.

To motivate our attack, we can view the FX block cipher as choosing a random key & and then
applying the Even-Mansour construction to the function Fr. We can therefore trivially adapt
Daemen’s chosen-plaintext attack [5] on the Even-Mansour construction [8]. Unfortunately, we
don’t know the value of k, so we instead try all possible ones. For completeness, we describe the
attack and calculate the amount of work required to have probability € of recovering the key.

5.1 Preliminaries

Assume that m is even, m < 2", and € < 3. Fix a constant C € {0,1}" — {0"}. For any function
G, define G®(z) = G(z ® C) ® G(x). Given an oracle for G one can compute G* by making two
calls. Let the secret key K = k.k1.k2. Let E by a synonym for FX. By our definitions and simple
algebra we have

E&(z)=Fz @ kl)=F (z @ C @ k).

5.2 The key-search attack

The attacker A works as follows. A uses oracles computing F X (for the correct K = k.k1.k2)
and F. Attacker A takes as parameters m, the maximum number of queries it is allowed to make
to the F X oracle and € a required lower bound on its probability of producing a key K’ that gives
consistent results on the m queries it made to F'Xg.

A(m,e)
1. Choose T1,..., %y € {0,1}" arbitrarily so that
TEST = T1,...,Tp/2,T1 ®C,... 1 Tm /2 ®C

has m distinet elements.

2. Using the F X oracle, compute F X (t) for t € TEST, and then compute

FX;\;(II)a AR -:FXI%(Im/?)'

3. Forifrom1to /= [M-‘ do

m

Choose r & {0,1}"

14



For all k' € {0,1}*,1<j<m/2do
If F3(r) = FXg(z;)
/* Hope that k' = k and r is either z; @ k1 or z; & C @ k1 */
Forkl' € {z; @ r,z; ® C ®r}
B = F(z; ® kl') ® FXk(z); K'=k'k1'k2
If FXgi(t) = FXk(t) for t € TEST
Return K’

5.3 Analysis of the attack

To analyze this attack we first bound the oracle-query complexity of testing each r. We then
compute how many r’s are needed in order to succeed with probability e.

We say that r is good if it is equal to z; @ k1 or 2; & C' @ k1 for some j. If r is good then as soon
as the attacker tries &' = k (remember she tries them all) she will obtain the correct values for k1’
and then k2’ (though she may try some incorrect values as well).

We now bound the expected cost of trying each r. For each value of r (good or bad), the attacker
must go through, in the worst case, all 2% values for k’. For each value of &', it makes 2 calls to
the F oracle in order to compute F,ﬁ(r), giving a base cost of 277! calls to the F oracle. Given a
promising (j, k'), where F2(r) = FXg(x;), the attacker generates 2 guesses k1’, and for each k1’
she makes an additional call to the I oracle to compute k2'. Testing &', k1" and k2’ requires no
further oracle calls.

We note that for any r, when & # k the distribution on Fﬁ(r) is random even conditioned on
the answers to all of the FX oracle queries. Thus, the expected number of j such that (£, j) is
promising is at most m /2", When k' = k, then in the worst case, m/2 promising values of (&', j)
are tested. Therefore, the expected extra number of oracle queries needed to evaluate promising
candidates is at most m + m2" /2" for each value of r selected. Thus, for each random r selected,
a total of at most

27t 4 m 4+ m2s

expected queries are required.

It remains to bound the number of r’s that must be tried in order to select a good r with probability
at least e. There are exactly m good r out of 2" possibilities. Thus, the probability that £ randomly
selected values for 7 will fail to be good is at most (1 —m/2")f. We thus need to select £ so that
(1—=m/2")f <1 —¢. Using the identity (1 +a)? < e, it suffices to achieve

e—mf/'z" 1=

or equivalently,

—9M In(] —
(> 2" In(1 e).
m

For 0 < € < %, —In(1 —€) < e+ €%, so it suffices that

M (¢ 2
> (e+e )
m

/



Summarizing the above, there is an attack which finds a consistent key K’ = k'.k1".k2" with
probability € using m queries to the F X oracle, and at most expected

(2n+x+l—lgm +9" 4 2~) (( +€?)

queries to the F'/F~" oracles. The theorem follows. ¢

6 Open Problems and Conclusions

ANALYSIS OF OTHER MULTIPLE ENCRYPTION SCHEMES. The model we have used to upper bound
the worth of key search applies to many other block-cipher based constructions. For example, it
would be interesting to apply this model to bound the maximal advantage an adversary can get
for triple DES with three distinct keys, or triple DES with the first and third keys equal, or the
method of [4]. Tt would be interesting to demonstrate that some construction has a better effective
key length than DESX (e.g., k +n — 1 bits).

Use 11! Work within some standards bodies continues to specify encryption based on DES in its
most customary mode of operation. We recommend DESX (or one of its variants, as in Section 4).
DESX is efficient, DES-compatible, patent-unencumbered, and resists generic key-search attacks.
In virtually every way, DESX would seem to be a better DES than DES.
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A Proof of Claim 3.2

We first define a new game, denoted Game X', which matches more directly the definition of the
experiment defining Py. Game X' is defined in Figure 3.

First, note that no adversary can distinguish between playing Game X’ and playing with ora-
cles (FX g, F,F~') drawn according to the experiment defining Py. Indeed the only difference
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Initially, let F be undefined. Randomly choose k* & {0,1}*, ki, k3 & {0,1}". Then answer each query the
adversary makes as follows:

On oracle query E(P):

1. If Fi- (P @ k7) is defined, return Fi. (P & k) @ k3.

2. Otherwise, choose y uniformly from Range(Fj- ), define Fj. (P @ kf) = y and return y & k3.
On oracle query Fi(z):

1. If Fi(x) is defined, return F(z).
2. Else, choose y € {0, 1}" uniformly from Range(F}), define Fy(z) =y and return y.

On oracle query kal(y):

1. If F‘,‘l(y) is defined, return Fk‘l(y).

2. Else, choose x € {0, 1}" uniformly from Dom(F}), define Fj(x) = y and return z.

Figure 3: Game X'

between these scenarios is that Game X' generates values for F and F by “lazy evaluation,”
whereas the experiment defining Py would generate these values all at the beginning. Thus
Pry: [ ABFF™ = 1] = Py,

We want to show that Pry [AE'F’""_l = 1] = Pry: [AE’F’F_l = 1]: no adversary A can distinguish
whether she is playing Game X or X’. We emphasize that A’s ability to distinguish between
Games X and X' is based strictly on the input/output behavior of the oracles; the adversary can
not see, for example, whether or not the flag bad has been set.

We will show something even stronger than that Games X and X' look identical to any adversary.
Observe that both Game X and Game X' begin with random choices for &*,k{ and k5. We show
that, for any particular values of k*, k7 and k3, Game X with these initial values of k*,k} and k3
is identical, to the adversary, to Game X' with these same initial values of £*, k] and k3. So, for
the remainder of the proof, we consider £*, k] and k3 to have fixed, arbitrary values.

A basic difference between Games X and X' is that Game X separately defines both E and Fy.
while Game X' only defines Fy.- and computes E(P), in response to a query P, by Fi«(P @ ki) @ k3.
The essence of our argument is that Game X can also be viewed as answering its E(P) queries by
referring to Fj-. But, strictly speaking, it's not really Fi- which can be consulted. We get around
this as follows.

Given partial functions E and Fi«, these functions having arisen in Game X, define the partial
function Fi« by

Fi+(z) if Fy-(z) is defined,
Fie(z) =4 E(x ® kj) ® k3 if E(z @ k) is defined, and
undefined otherwise.

Thus, in executing Game X, defining a value for E or Fj- can implicitly define a new value for .
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At face value, the above definition might be inconsistent—this could happen if both Fj«(z) and
E(x @ k) are defined for some z, and with “clashing” values (ie., values which do not differ by
k3). Before we proceed, we observe that this can never happen:

Claim A.1 Let E and Fy- be partial functions which may arise in in Game X. Then the function
Fy+, as described above, is well-defined.

The proof is by induction on the number of “Define” steps (Steps E-3, F-3, or F~'-3) in the
definition of Game X, where points of I:“k, become defined as Game X executes. The basis (when
E and F~! are completely undefined) is trivial. So suppose that, in step E-3, weset E(P) = C. Is it
possible that this definition of E(P) will cause f‘k_ to become ill-defined? The only potential conflict
is between the new E(P) value and a value already selected for Fi«(P @ k{). So if Fy- (P @ k) was
not yet defined, there is no new conflict created in Step E-3. If, on the other hand, Fi-(P @ k)
was already defined, then its value, by virtue of Step E-2, is E(P) @ k3. This choice results in ﬁk-
remaining well-defined. The analysis for the cases corresponding to Steps F-3 and F~'-3 is exactly
analogous, and is omitted.  {

The function ﬁ’k., as defined for Game X, also makes sense for Game X', where fk (z) = Fi« ( p).
Our strategy, then, is to explain the effect of each E, Fj., and F,C query strictly in terms of F;,
We then observe that Game X' responds to its oracle queries in an absolutely identical way. This
suffices to show the games equivalent.

Case 1. We first analyze the behavior of Game X on oracle query E(P). To begin, note that
Game X never defines the value of E(P) unless it has received P as a query. So since A never repeats
queries (see the assumptions just following the theorem statement) F(P) must be undefined at the
time of query P. Consequently, at the time of query P, By (P @ k) will be defined iff Fy-(P @ k)
is defined, and Fi-(P @ kf) = F(P @ k7). Case la. When Fj+ (P @ k7) is defined, then Game X
returns the value of C' = Fk (P @ kT) @ k5. In this case, setting E(P) = C leaves Fp unchanged.
Case 1b. When FA (P@®k7) is undeﬁned, then C is repeatedly chosen uniformly from Range(FE)
until Fi. YC @ k3) is undefined. By the definition of Fie it follows that y = C @ k3 is uniformly
distributed over Ra—mge(f‘k.). In this case, setting E(P) = C' sets f‘k-(P @ ki) =

Now compare the above with Game X' on query E(P). When Fy-(P @ k{) is defined, then C =
Fi« (P & k7) @ k3 is returned and no function values are set. When Fj- (P @ ki) is undefined, y is
chosen uniformly from Range(Fj-), Fi-(P @ ki) is set to y (and implicitly f‘k-(P @ k) is set to
y), and C =y & k3 is returned. Thus, the behavior of Game X' on query E(P) is identical to the
behavior of Game X on query E(P).

Case 2. We will be somewhat briefer with our analyses of the F' and F~' oracles, which are similar
to the analysis above. Case 2a. On oracle query Fj.(z), when k # k* then the behavior of Game X
is clearly identical to Game X', Case 2h. When k = k" then Fj-(z) is defined iff a query of the
form E(z @ k}) has been made. This holds iff j 2 () is defined (since Fi«(z) would not have been
queried before). By a straightforward argument the value y returned from the query F(z) will then
bey=E(z® k) ®k; = Fk (z) in both games. Case 2c. When B (z) is undefined, then in both
games ¥ is umformly ('hosen from Range(F,r ) and Fe (z) is defined to be y. Thus, in all cases,
Game X behaves identically to Game X'.
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Case 3. Finally, on oracle query Fk"(y), the case k # k" is again trivial. When k = k*, then
F..'(y) will be defined iff E~"(y @ k3) is defined, in which case z = E~'(y ® k3) @ k} = F..'(y) in
both games. When Ij’k_.l (y) is undefined, then in both games z is chosen uniformly from m(f‘k)
and Fp. () is defined to be y. Again, Game X behaves identically to Game X'
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Advanced Slide Attacks

Alex Biryukov* and David Wagner**

Abstract. Recently a powerful cryptanalytic tool—the slide attack—
was introduced [3]. Slide attacks are very successful in breaking iterative
ciphers with a high degree of self-similarity and even more surprisingly
are independent of the number of rounds of a cipher. In this paper we
extend the applicability of slide attacks to a larger class of ciphers. We
find very efficient known- and chosen-text attacks on generic Feistel ci-
phers with a periodic key-schedule with four independent subkeys, and
consequently we are able to break a DES variant proposed in [2] using
just 128 chosen texts and negligible time for the analysis (for one out of
every 2'° keys). We also describe knoun-plaintext attacks on DESX and
Even-Mansour schemes with the same complexity as the best previously
known chosen-plaintert attacks on these ciphers. Finally, we provide new
insight into the design of GOST by successfully analyzing a 20-round
variant (GOST@) and demonstrating weak key classes for all 32 rounds.

1 Introduction

The slide attack is a powerful new method of cryptanalysis of block-ciphers
introduced in [3]. The unique feature of this new cryptanalytic attack is its
independence of the number of rounds used in the cipher of interest: when a
slide attack is possible, the cipher can be broken no matter how many rounds are
used. This capability is indispensable in a study of modern iterative block ciphers
and hash functions. As the speed of computers grows, it is natural to use more
and more rounds, which motivates our study of attacks that are independent
of the number of rounds. While addition of a few rounds usually stops even a
very sophisticated cryptanalytic attack (such as a differential or linear attack), in
contrast a cipher vulnerable to slide attacks cannot be strengthened by increasing
the number of its rounds. Instead, one must change the key-schedule or the design
of the rounds.

In [3] it was shown that slide attacks exploit the degree of self-similarity of
a block cipher and thus are applicable to iterative block-ciphers with a periodic
key-schedule. It was also shown that slide attacks apply to auto-key ciphers
(where the choice of the round subkeys is data-dependent). As an example an
attack was presented on modified Blowfish [17], a cipher based on key-dependent
S-boxes which so far had resisted all the conventional attacks.

* Applied Mathematics department, Technion - Israel Institute of Technology, Haifa,
Israel 32000, and Computer Science department, The Weizmann Institute of Science,
Rehovot 76100, Israel. Email: albi@wisdom.weizmann.ac.il
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Table 1. Summary of our attacks on various ciphers.

Cipher (Rounds) Key bits Best Previous Attack Our Attack
Data Type Time Data Type Time
2K-DES (o0) 96 2% KP2> 2" KP 2"
2K-DES (o) 96 2% KP 2% 2 Ccejee 2™
4K-Feistel (o) 192 — —— e KPP gne
4K-Feistel (o) 192, — e 217 ep/ce 2"
4K-DES” (o0) 192 — e 27 gPyoo 2
Brown-Seberry-DES®  (oc) 56— - 128 CP/CC 27
DESX (16) 184 2™ cpf-n et KR ganE
DESX (16) 184 2™ CEalat=m  PEs BO g
Even-Mansour (—) 2n 27/? cCp2™/? 2"/? KP on/2
GOSTd (20) 256 — = > KP - i

CO — ciphertext-only, KP — known-plaintext, CP — chosen-plaintext, CP/CC —
chosen plaintext/ciphertext. © — Our attack on 4K-DES and Brown-Seberry-DES works
for 1/2'% of all keys. Note that attacks on 2K-DES work for all the keys.

The existence of attacks which are independent of the number of rounds is
perhaps counter-intuitive. To illustrate this consider a quote from [15]:

“Except in a few degenerate cases, an algorithm can be made arbitrarily
secure by adding more rounds.”
LY g

Slide attacks force us to revise this intuition, and this motivates our detailed
study of advanced sliding techniques.

In this paper we introduce advanced sliding techniques—sliding with a twist
and the complementation slide—that result in a more efficient slide attacks and
allow to attack new classes of ciphers. We illustrate these techniques on generic
Feistel constructions with two- or four-round self-similarity as well as a Luby-
Rackoff construction and also the example ciphers 2K-DES and 4K-DES, which
differ from DES only by having 64 rounds, a 96- or 192-bit key, and a simplified
(periodic) key-schedule. Analysis of these ciphers is of independent interest since
it demonstrates the dangers of some ways to extend DES. Specifically we show
a very efficient attack on a variant of DES proposed in [2]: our attack uses only
128 chosen texts and negligible time of analysis (for a 2716 fraction of all keys).

We then apply the newly developed methods to the DESX and Even-Mansour
schemes, and we show known-plaintext slide attacks with the same complexity as
the best previously known chosen-plaintext attacks. We also apply slide attacks
to the GOST cipher (a Russian equivalent of DES) obtaining insights on its
design.

See Table 1 for a summary of our results. For each cipher a number of rounds
that our attack is able to cover is presented; o is shown if our attack is indepen-
dent of the number of rounds of a cipher. The block size in bits is denoted by n,
and the ‘Key bits’ column denotes the number of secret key bits of the cipher.

This paper is organized as follows: In Section 2 we briefly describe conven-
tional slide attacks. We develop several advanced sliding techniques in Section 3,
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illustrating them on generic Feistel ciphers with periodic key-schedules. As a side
effect we receive a distinguishing attack on the ¥(f, g, f. g, ..., f, g) Luby-Rackoff
construction (see the end of Section 3.2). We then apply the newly developed
techniques to the analysis of DESX and Even-Mansour schemes in Section 4.
In Section 5 we turn advanced slide attacks to the analysis of GOST. Finally
Section 6 summarizes some related work and Section 7 outlines some possible
directions for further research.

2 Conventional Slide Attacks

Earlier work [3] described a simple form of slide analysis applicable to ciphers
with self-similar round subkey sequences or autokey ciphers. We briefly sketch
those ideas here; see [3] for full details and cryptanalysis of a number of ciphers,
and Section 6 for other related work.

In the simplest case, we have an r-round cipher F whose rounds all use the
same subkey, so that ¥ = FoF o...0 F = F". Note that if the key schedule
of a cipher is periodic with period p, we can consider F' to be a “generalized”
round consisting of p rounds of the original cipher. We call such ciphers p-round
self-similar. Let (P, C) be a known plaintext-ciphertext pair for E. The crucial
observation is

P' = F(P) implies C'= E(P')= F'(F(P))=F(F"(P))= F(C).

In a standard slide attack, we try to find pairs (P, C), (P',C’) with P’ = F(P);
we call such a pair a slid pair, and then we will get the extra relation C' = F(C)
“for free.”

A’ Encryption
Fig. 1. A conventional slide attack on a generic Feistel cipher with one-round self-
similarity. If L' = Rand R' = L & f(K & R), the texts shown above will form a slid
pair, and we will have M’ = N and N' =M & f(K & N).

Slide attacks provide a very general attack on iterated product ciphers with
repeating round subkeys. The only requirement on F' is that it is very weak
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against known-plaintext attack with two pairs (we are able to relax this require-
ment later, in Section 3.5). More precisely, we call Fj(x) a weak permutation if
given the two equations Fj.(z1) = y1 and Fj(22) = y2 it is “easy” to extract the
key k. Such a cipher (with a n-bit block) can be broken with only 2"/2 known
texts, since then we obtain 2" possible pairs (P, C'), (P’,C"); as each pair has a
27" chance of forming a slid pair, we expect to see one slid pair which discloses
the key.

Feistel ciphers form an important special case for sliding, since the attack
complexity can be substantially reduced from the general case. We depict in
Figure 1 a conventional slide attack on a Feistel cipher with repeating round
subkeys. The Feistel round structure gives us an n-bit filtering condition on slid
pairs, which lets us reduce the complexity of analysis to about 2"/2 time and
space, a significant improvement over the 2" work required for the general attack
listed above. Furthermore, there is a chosen-text variation which works against
Feistel ciphers with about 2"/* chosen plaintexts: we may simply use structures
to ‘bypass the first round’. See [3] for details.

In this paper, we focus on generalizing the slide attack to apply to a broader
range of constructions.

3 Advanced Sliding Techniques

In this section we show several ways of extending the basic slide attack to apply
to larger classes of ciphers. In the following subsections we introduce two new
methods: the complementation slide and sliding with a twist.

‘We will describe these new techniques by applying them first to a generic Feis-
tel cipher with a 64-bit block and self-similar round subkeys. (See Figure 1 for an
example of such a cipher, where the subkeys exhibit one-round self-similarity. In
this section, we consider up to four-round self-similarity.) For ease of illustration
we will show graphically ciphers with only a small number of rounds, but we
emphasize that the attacks described in this section apply to ciphers with any
number of rounds. After describing the basic attack techniques we will show how
to extend them to real ciphers.

3.1 The Complementation Slide

First we show a method to amplify self-similarity of Feistel ciphers with two-
round self-similarity by exploiting its complementation properties, thus allowing
for much better attacks. We call this approach the complementation slide.

In the conventional attack, to deal with two-round self-similarity one must
slide by two rounds (thus achieving a perfect alignment of rounds with Ky and
K,), but this yields inefficient attacks. In contrast, we suggest to slide by only one
round. This introduces the difference A = Ky & K between slid encryptions in
all the rounds. Notice that we have effectively amplified the self-similarity of the
cipher from 2-round to l-round self similarity. However together with amplified
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R
L! R
ReA Ky
Ky
Ko
MaA Ky [N A
f 1 Encryption é‘—m—ﬁ'—

j‘.‘[’>—<l\]’

Encryption

Fig. 2. A complementation slide attack on a Feistel cipher with two-round self-
similarity. If L' = R® A and R' = L @ f(Ko & R) & A, the texts shown above
will form a slid pair, and we will have M' = N@d Aand N' = M & f(K1 &N G A) B A,
where A = Ko ¢ K.

self-similarity we have introduced differences between rounds of encryption in a
slid pair. How can the attack proceed?

Our answer is to choose a slid pair so that the plaintext differences will cancel
the difference between the subkeys. Instead of searching for plaintexts with slid
difference zero, we search for plaintexts with slid difference (A, A). (Note: We
say that a pair of plaintexts P, P’ has slid difference d if F(P) & P’ = d.) Such
a slid difference will propagate with probability one through all the rounds, and
thus will appear at the ciphertext. See Figure 2 for a pictorial illustration of the
attack.

The slid pairs can be found in a pool of 232 known plaintexts, as before. If
we denote the plaintext by P = (L, R) and the ciphertext by C' = (M, N}, we
get the following slid equations:

(L'yR"Y=(R,La® f(Ko® R)) ® {4, 4)
(M',N"Y=(N,Ma f(Ki N & A)) & (A, A).

Thus we have L’ & M’ = R & N which is a 32-bit condition on a slid pair.
Moreover the second equation suggests a 32-bit candidate for A = Ko & K,; if
we have several slid pairs, this value should coincide for all of them (although
we do not need the latter property in our attack). Thus the S/N ratio of this
attack is very high. As soon as one slid pair is found, we derive A = Ky & K.
Then, if the round function f is weak enough, we will be able to derive the keys
Ky and K| themselves from the first and second equations. We will only need to
examine 23! pairs (due to the 32-bit filtering condition) and each pair suggests
at most one candidate key, so the work-factor of the attack is very low.

To summarize, this gives a known plaintext attack on a generic Feistel cipher
with two-round self-similarity. The complexity of the attack is quite realistic: we
need just 232 known texts and at most 232 light steps of analysis. However, see
Section 3.2 for an even better attack.
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Fig. 3. Sliding with a twist, applied to a Feistel cipher with two-round self-similarity.
IfN' =Rand M' = L& f(Ko @ R), the texts shown above will form a (twisted) slid
pair, and we will have R = N and L' = M & f(Ko & N).

Even more interestingly: We can consider a variant with four independent
subkeys, Ko, K;, K3, K3, so that the key size is 128 bits. If we slide by two
rounds we find that the XOR differences between subkeys are 2-round self-similar!
A modified version of the above attack works, although the S/N ratio is not as
high as before. Complementation sliding thus provides a powerful technique for
amplifying self-similarity in iterated ciphers.

3.2 Sliding with a Twist

We next describe a novel technique of sliding with a twist on a Feistel cipher
with two-round self-similarity. This allows for even better attacks than those
presented above. See also our attack on DESX in Section 4 for an important
application of sliding with a twist.

If we ignore the final swap for the moment, then decryption with a Feistel
cipher under key Ky, K is the same as encryption with key K, Ky'. Of course,
Feistel encryption with key Ky, K1 is very similar to encryption with key K4, Kjy:
they are just out of phase by one round. Therefore, we can slide by one round
a decryption process against an encryption process (the twist). This provides us
with a slid pair with an overlap of all rounds except for one round at the top
and one round at the bottom. Notice that due to the twist these rounds both
use the same subkey K. See Figure 3 for a graphical depiction.

The attack begins by obtaining a pool of 232 known texts, so that we expect
to find one slid pair. For a slid pair, we have

(M',N'y = (L & f(Ko® R),R) (L',R') = (M & f(Ko ® N), N)

which gives us a 64-bit filtering condition on slid pairs (namely N’ = R and
R’ = N). Thus the slid pair can be easily found with a hash table and 2*? work,
and it immediately reveals the subkey K.

' In [3] such cipher, based on DES was called 2K-DES.
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The rest of the key material can be obtained in a second analysis phase with
a simplified conventional sliding (by two rounds and without a twist) using the
same pool of texts and with less than 2*? work. Pick a ciphertext from a pool,
partially encrypt it with Ky and search the pool of ciphertexts for one with
coinciding 32 bits. If such a ciphertext is found perform a similar check on their
plaintexts. If both conditions hold this is a slid pair that provides us with K.
This attack requires just 232 known texts and 233 work.

Moreover, there is a chosen-plaintext/ciphertext variant that allows us to
reduce the number of texts down to 217 with the use of structures. We generate
a pool of 216 plaintexts of the form (L;, R) and obtain their encryptions. Also,
we build a pool of 2! ciphertexts of the form (M, N') and decrypt each of them,
where the value N’ = R is fixed throughout the attack. This is expected to give
one slid pair, and then the analysis proceeds as before.

This demonstrates that sliding with a twist is capable of attacking any n-bit
Feistel block cipher with a two-round periodic key-schedule with 2/2 known
plaintexts and about 2™/2 time, or with about 2/* chosen plain-ciphertexts
and about 2™/4 time. Also, sliding with a twist can be used to distinguish a
Luby-Rackoff [13] construction with two alternating pseudo-random functions
f and g and with an arbitrary number of rounds (an accepted notation is
Y (f.g,f.9.....f g)) from a random permutation with about 2"/2 known plain-
texts and similar time (given that the block size is n bits), or with about 27/4
chosen plaintext /ciphertext queries and similar time.

3.3 Better Amplification of Self-Similarity: Four-Round Periodicity

In this section we combine the complementation slide and sliding with a twist
to amplify the self-similarity of round subkeys even further. Consider a Feistel
cipher with key schedule that repeats every four rounds, using independent sub-
keys Ko, Ky, K2, K3, and suppose these keys are XORed at the input of the
f-function. We call this generic cipher a 4K-Feistel cipher.

One may naively slide by two rounds to amplify self-similarity, like this:

K'() Kl IX’Q K’g Ky K1 s
KoKy K K3 Kg K, ...

Then one may use a complementation slide technique using the slid difference
(Ky & K3, Ky & Ks). However, there doesn’t seem to be any way to make this
attack work with less than 2"/2 texts, and the analysis phase is hard.

Better results are possible if one applies sliding with a twist. At a first glance,
the twist may not seem to be applicable, but consider combining it simultane-
ously with the complementation slide, like this:

KoKy Ko Ks Ko K1 Ko K3 Ky ...
K5 I\’2 K, Ko K3 K2 K, KygKs...

The top row represents an encryption, and the bottom represents a decryption
(or, equivalently, encryption by K3, K3, K, Ko, due to the similarity between
encryption and decryption in Feistel ciphers).
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Fig. 4. Combining the complementation slide and sliding with a twist techniques in a
single unified attack against a Feistel cipher with four-round self-similarity.

Now note that the odd rounds always line up, but the even rounds have the
constant difference Ky & K3 in the round subkeys. Therefore, we can apply the
complementation slide technique, if we can get texts with a slid difference of
(0, Ky @ K3). Then we get the attack shown in Figure 4.

Combining the two advanced sliding techniques provides a number of sig-
nificant benefits. First, we obtain an n-bit filtering condition, so detecting slid
pairs becomes easy. Consequently, the analysis phase is straightforward. Also,
the combined approach makes it easier to recover key material from a slid
pair. Finally, perhaps the most important improvement is that now we can re-
duce the data complexity of the attack to just 2™/? texts, in the case where
chosen-plaintext /ciphertext queries are allowed. Neither advanced sliding tech-
nique can—on its own—provide these advantages; in this respect, the whole is
greater than the sum of the parts.

3.4 Attack on DES with Brown-Seberry Key-schedule

In [2] an alternative key-schedule for DES was proposed. This key-schedule was
supposed to be “as effective as that used in the current DES” and was “suggested
for use in any new algorithm” [2]. This variant of DES was already studied
in [1] resulting in a related-key attack on it. In this section we show a chosen
plaintext /ciphertext slide attack on this variant of DES, which uses only 128
chosen texts and negligible time for analysis. The attack works for 24° out of 2°6
keys.
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To remind the reader: the DES key-schedule consists of two permuted-choice
permutations PC1 and PC2, and a rotation schedule. The first permuted choice
PC1 is used to reduce the key-size from 64 bits to 56 bits. Then the result is
divided into two 28-bit registers C' and ID. Each round we cyclicly rotate both
registers by one or two bits to the left. Permuted choice PC2 is applied to the
result, which picks 24 bits from each 28-bit register and thus forms a 48-bit
round subkey.

In [2] a key-schedule that rotates by 7 bits every round was proposed (instead
of the irregular 1,2-bit rotations used in DES). Due to a larger rotation amount
which spreads bits between different S-boxes the PC2 permutation was simplified
to become an identity permutation which just discards the last 4 bits of each 28-
bit register. We claim that for 1/2% of the keys, this variant can be broken with
our sliding with a twist techniques as follows: the known-plaintext attack will
require 232 texts, time and space; the chosen-plaintext/ciphertext, however,
will require only 27 texts!

First of all notice that since the new rotation amount (7 bits) divides the size
of the key-schedule registers (28 bits) the registers C, D return to their original
state every four rounds. This results in a key-schedule with a period of four, which
can be analyzed by the methods that we developed in the previous sections for
the four-round self-similar Feistel ciphers. We will extend the standard attack
even further by noticing that DES key-schedule is used and not four independent
round subkeys as in our previous model. However, DES-like ciphers introduce
one small complication: the DES round function XORs the subkey against the
48-bit expanded input rather than the raw 32-bit input, so the complementation
slide only works if the 48-bit subkey difference is expressible as the expansion of
some 32-bit text difference.

Let J; = (C <« Ti, D < Ti) so that K; = PC2(J;). For the sliding with
a twist to work in the case of DES we need K, @& K3 to have an ‘expandable’
form in order to pass through the 32 to 48 expansion of the DES round function.
Note also that if J; = (u, v, v/, v’) where u,v,u,v’ are all 14-bit quantities, then
Jsz = (v,u,v’,u') in a Brown-Seberry key-schedule, and thus for Z = .J; & J; we
have Z; = Z; 14 for i € {0,1,...,13,28,29,...,41}. The PC2 just discards Z;
for i € {24,25,...,27,52,53,...,55} to get the 48-bit quantity ¥ = PC2(Z) =
K, & Ks.

If we insist ¥ = Expansion(X) for some X, we get 16 constraints on Y:
namely, V; =Yijo fori =65 +k, 5 € {0,...,7}, k € {4,5} where subscripts are
taken modulo 48. Thus we have

Z; = Ziyo for i € {4,5,10,11,16,17, 32, 33, 38, 39, 44, 45};

and Z; = Z;4¢ for i € {22,23,50,51}. Therefore Y = Ky & K3 is expandable if
and only if Z = .J; & J3 has the form

Z = (abeded cdef gh ghabed ededef ghgh efklkl klabmn mnefkl klklab mnmn)

where a, b, .., n are 12 arbitrary bits. we see that there are exactly 212 expandable
values of K| & K3 that satisfy the required constraints. Moreover, for each ex-
pandable value of Ky & K3, there are 22® possible values of .J; for which K1 & K3
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has the given value (since we may choose u and u' arbitrarily, setting v and v’
as required to ensure that (v @ v, u ® v, v’ @ v', v’ @ v') has an appropriate value
for J 1 D J3)

This shows that there are ralues of .J; that lead to four-round self-
similarity with an expandable value for K| & K3. In other words, 1/ 216 of the
keys are breakable with our standard attack. Note that the standard attack for
the case of four independent round subkeys uses 2329 known texts, time and
space, or 2'7 chosen texts, time and space. However, we may use the special
structure of Ky & K3 to significantly reduce the complexity of the chosen-text
attack.

In particular, we choose 29 plaintexts of the form (L;, R) and 2° ciphertexts
of the form (M ;, N'"), where R = N’ is fixed throughout the attack and

240

L; = (bedc de fO Oabe dede fO00 0ab0 0ef0 000a)
M = (0000 000g KOO0 0000 Oklk 100m nO0k 1kIO), so that

Li ® M] = (bede defg habe dede fklk labm nefk lkla)

and thus Expansion(L; @ M) = K; & K3 for some i, j, which immediately gives
us a slid pair. (We assume for ease of description that the cipher includes the
final swap and no IP or FP, so that Figure 4 in Section 3.2 applies.) We can
recognize the slid pair by a 64-bit filtering condition on (M, N}, (L', R"), and so
the analysis phase is easy.

To sum up, this provides an attack on the cipher that breaks 1/2'% of the
keys with 27 chosen texts, time and space.

3.5 Generalizations for a Composition of Stronger Functions

In Section 2 we have seen how a typical slide attack may work. However, in many
cases this approach is too restrictive, since it may be desirable to analyze ciphers
which decompose into a product of stronger functions; in particular, the round
function may be strong enough that multiple input/output pairs are required to
recover any key material. In this section we show several techniques to handle
this situation.

One approach is to use a differential analysis. Denote by n the block size of
the cipher. Suppose there is a non-trivial differential characteristic AX — AY
of probability p for the round function. We associate to each plaintext P the
plaintext P& AX and to each plaintext P’ another plaintext P’ & AY . Then, if
P’ = F(P), we will also have P' & AY = F(P & AX) with probability p (thanks
to the characteristic AX — AY'), which provides two slid pairs. In this way we
may obtain four known input/output pairs for the function F. We can generate
a set of 3 - 2/2p—1/2 chosen plaintexts such that for plaintext P in the chosen
set the plaintexts P & AX and P & AY are also in the set; then we will expect
to see one pair P, P’ satisfying both the slide and the differential patterns.

The second approach (which is probably the simplest) works like this. Sup-
pose to recover the key we need N known texts for the round function F. For



Advanced Slide Attacks 605

each plaintext P, we suggest to get the encryption E'(P) of P, and the double-
encryption E?(P) = E(E(P)) of P, and so on, until we have obtained E2N (P).
Then, if P/ = F(E'(P)), we find 2N — i slid pairs “for free” by the relation
Ei(P") = F(E'+(P)) for j = 1,..,2N — i. With 2*+1)/2N1/2 chosen texts,
we expect to find about N slid pairs in this way (probably all in the same
batch formed from a single coincidence of the form P’ = F(E'(P))). To locate
the batch of slid pairs, one could naively try all 2"+2 possible pairings of texts
(though in practice we would search for a more efficient approach); each pairing
that gives N or more known texts for F' will suggest a key value that can then
be tested?.

Normally this last attack would be classified as an adaptive chosen-plaintext
attack. However, note that in many modes (CBC, CFB) it can be done with a
non-adaptive chosen-plaintext attack. Furthermore, in the case of OFB mode,
a known plaintext assumption suffices. However, these comments assume that
re-encryption preserves the sliding property, which is not always the case.

Another possible generalization is in the case of Feistel-ciphers. In this case
one can detect slid pairs even before trying to find the correct secret key k. In the
case of a balanced Feistel cipher with block size n we have an n /2-bit condition on
the ciphertexts of a slid pair. This increases the S/N ratio considerably, filtering
out most of the incorrect pairs even before we start the analysis. This property
allows an attacker to accumulate sufficient number of slid pairs before he starts
an attack on a round-reduced variant of a cipher.

Notice also that if we use a technique for receiving many slid pairs in the
case of a Feistel-cipher, we would need only 2 -2"/4N chosen texts, and the S/N
ratio will be excellent by comparing several halves of the ciphertexts.

Furthermore if N1/2 > 27/4_ an absolutely different idea can be used. Choose
a random starting point P. About 2"/2 times iterate the following operation so F,
where s denotes swap of the halves (the swap is needed only if E has no final swap
at the last round). This way one can obtain more than 2%/2-1°27 s}id pairs (here
r denotes the number of rounds of a cipher). The S/N ratio is again excellent.
The idea is that we essentially search for a symmetric point (A, A) of a round
function, which happens after about 2"/? rounds (227187 encryptions). This
does not necessarily happen in the middle of a cipher, so we may have to perform
up to r times more encryptions before we reach a fixed point for E. In half of the
cases (if the first symmetric point happened at an even round) we will receive
an orbit “slidable” by two rounds, and in other half of the cases (symmetric
point at odd rounds) an orbit will be “slidable” by one round. Even if an orbit
is “slidable” only by two, and thus n/2-bit filtration will be unreachable to us,
the encryption fixed point that ends our orbit helps us slide the orbit correctly
(at most r/2 possibilities).

2 If E were behaving like a random function, it would be enough to take 2"/? 4+ N
encryptions, from an orbit of some arbitrarily chosen element P, but since FE' is
expected to behave like a random permutation, an orbit of P will be a part of
usually a very large cycle, leaving no place for collisions. Considering a few more
orbits will not help either.



606 Alex Biryukov and David Wagner

4 Cryptanalysis of DESX and Even-Mansour Schemes

DESX is an extension of DES proposed by Rivest in 1984. It makes DES more
resistant to exhaustive search attacks by XORing two 64-bit keys: one at the
input and another at the output of the DES encryption box®. See [10, 16] for
theoretical analysis of DESX.

In this section we show the unexpected result that the DESX construction
contains just enough symmetry to allow for slide attacks. These results are ac-
tually generally applicable to all uses of pre- and post-whitening (when applied
using self-inverse operations like XOR), but for convenience of exposition we will
focus on DESX.

The attacks presented here are another example of an application of the pow-
erful new sliding with a twist technique. Our attacks on DESX are significantly
better than the best previously known attacks: we need just 232 known texts
and 2875 time for the analysis, while the best generic attack reported in the lit-
erature is a chosen-plaintext attack with comparable complexity [10, 16]4. Thus,
sliding techniques allow one to move from the chosen-text attack model to the
more realistic known-text attack model. Even more unexpectedly, our attack can
also be converted to a ciphertext-only attack.

We briefly recall the definition of DESX. Let Ej(z) denote the result of DES-
encrypting the plaintext # under the key k. Then we define DESX encryption
under the key K = (k, kg, ky) as EXg(p) = ky ® Ex(p ® kz). To set up the
necessary slide relation, we imagine lining up a DESX encryption against a
slid DESX decryption, as shown in Figure 5. More specifically, we say that the
two known plaintext pairs (p,c) and (p', ') form a slid pair if ¢ @ ¢/ = k.
Consequently, for any slid pair, we will have

P =k ® E;N @ ky) = ko @ E; ()

as well as p = k. & Ek_l (¢'). Combining these two equations yields k, = p &
El;-l(c") =p @ E;l(c) As a result, we get a necessary property of slid pairs:
they must satisfy

Eil(c)ep=E'()ap. (%)

To get a single slid pair, we obtain 2323 known plaintexts (p;, ¢;) and search
for a pair which satisfies the sliding condition (x). The pairs can be recognized
efficiently with the following technique. We guess the DES key k. Next, we insert
EL Y(¢;) @ pi into a lookup table for each i; alternatively, we may sort the texts
by this value. A good slid pair (p,c}, (p’,¢’) will show up as a collision in the
table. Also, each candidate slid pair will suggest a value for k, and k, as above

3 Note that an idea to use simple keyed transformations around a complex mixing
transform goes back to Shannon [18, pp.713].

* One may apply differential or linear cryptanalysis to DESX, but then at least 2°°—
2°! texts are needed [11]. In contrast, slide attacks allow for a generic attack with a
much smaller data complexity.
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Fig. 5. Sliding with a twist, applied to DESX.

(eg, by =cdc and ky = p & E,:l(c’)), so we try the suggested DESX key
(k, ks, ky) immediately on a few known texts. With 2325 known texts, we expect
to find one false match (which can be eliminated quickly) per guess at k, as well
as one correct match (if our guess at k was correct). If this attack sketch is not
clear, see the algorithmic description in Figure 6.

In total, the average complexity of our slide attack on DESX is 25875 offline
trial DES encryptions, 2%2: known texts, and 232 space. The slide attack is eas-
ily parallelized. Compare this to the best attack previously reported in the open
literature, which is a chosen-plaintext attack that needs 2'21=™ time (average-
case) when 2™ texts are available [10,16]. Therefore, our attack converts the
chosen-plaintext assumption to a much more reasonable known-plaintext as-
sumption at no increase in the attack complexity.

CIPHERTEXT-ONLY ATTACKS. Note that in many cases our slide attack on DESX
can even be extended to a ciphertext-only attack. We suppose (for simplicity)
that most plaintext blocks are composed of just the lowercase letters ‘a’ to ‘z’,
encoded in ASCII, so that 24 bits of each plaintext are known®. For each i we
calculate 24 bits of Ek_l(c,;) & p; and store the result in a lookup table. Due to
the weak filtering condition, by the birthday paradox we expect to find about
22'32'5_1/224 = 219 collisions in the table. Each collision suggests a value for k,
(as ky = c@® ') and for 24 bits of k,, which we immediately try with a few DESX
trial decryptions on other known ciphertexts. Therefore, for each guess of k the
workfactor is 242 DES operations.

This provides a simple ciphertext-only attack needing about 232-% ciphertexts
and 29 offline DES operations. The work-factor can be reduced somewhat to
295 simple steps (where each step is much faster than a trial decryption), if 233

5 The attack degrades gracefully if our model of the plaintext source is only proba-
bilistic: for instance, if half of the texts follow the model, the attack will need only
v/2 times as many ciphertexts and only twice as much work.
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ATTACK:

1. Collect 232 known plaintexts {p;, ;).

2. For each k € {0,1}°%, do

3. Insert (E;l(c,;) & pi, 1) into a hash table keyed by the first component.
4. For each i # j with E;  (¢;) @ pi = E; ' (¢c;) @ pj, do

B Set ky = ¢; @ ¢} and kzzpi@E,:l(c,jeaky).
6.  Test the validity of the guessed key (k, k,., k) on a few more known texts.

Fig. 6. The DESX slide attack, in full detail. It is clear that—once discovered—the
attack may be described without reference to sliding, but the sliding with a twist
methodology made it possible to find the attack in the first place.

known ciphertexts are available, by considering candidate slid pairs two at a
time and filtering on the suggested value of k,, since then the correct value of
ky, will be suggested at least twice and can therefore be recognized in this way
before doing any trial decryptions. Note that these ciphertext-only attacks are
applicable not only to ECB mode but also to most of the standard chaining
modes, including CBC and CFB modes.

CRYPTANALYSIS OF THE EVEN-MANSOUR SCHEME. In [7], Even and Mansour
studied a simple n-bit block cipher construction based on a fixed pseudo-random
permutation and keyed n-bit XORs at the input and at the output. Due to the
generic nature of our previous attack on DESX it can also be used to analyze the
Even-Mansour construction®. In the case of Even-Mansour we replace E}. with
an unkeyed mixing transformation £ on n-bit blocks, so our slide attack succeeds
with just 2("+1)/2 known plaintexts and 2("+1/2 work. This provides a known-
plaintext attack with the same complexities as the best previously-known chosen
plaintext attack [6] and within a factor of /2 away from the Even-Mansour lower
bound.

5 Analysis of GOST

GOST, the Russian encryption standard [19], was published in 1989.7 Even
after considerable amount of time and effort, no progress in cryptanalysis of the
standard was made in the open literature except for a brief overview of a GOST
structure in [4] and a related key attack in [9]. In this section we apply slide
techniques to GOST and thus are able to produce cryptanalytic results that
shed some light on its internal structure.

The GOST encryption algorithm is a block cipher with 256-bit keys and a
64-bit block length. GOST is designed as a 32-round Feistel network, with 32-bit
round subkeys. See Figure 7 for a picture of one round of GOST.

% Of course, these attacks will apply with the same complexity to DESX when the
DES key k is known somehow.

" It was translated into English in 1993 and since then became well known to open
cryptographic community.
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Fig. 7. One round of a GOS'T cipher.

The key schedule divides the 256-bit key into eight 32-bit words Ky, ..., K,
and then uses those key words in the order Ky, ..., K7, Ko, ..., K+, Kqy, ..., Ky,
K-, Kg, ..., Kq. Notice the ‘twist’ in the last 8 rounds.

THE ANALYSIS OF GOST. GOST looks like a cipher that can be made both ar-
bitrarily strong or arbitrarily weak depending on the designer’s intent since some
crucial parts of the algorithm are left unspecified. A huge number of rounds (32)
and a well studied Feistel construction combined with Shannon’s substitution-
permutation sequence provide a solid basis for GOST’s security. However, as in
DES everything depends on the exact choice of the S-boxes and the key-schedule.
This is where GOST conceptually differs from DES: the S-boxes are not speci-
fied in the standard and are left as a secondary key common to a “network of
computers”®,

The second mystery of GOST is its key-schedule. It is very simple and pe-
riodic with the period of eight rounds except for the last eight rounds where
a twist happens. It is intriguing to find a reason for the twist in the last eight
rounds of the key schedule. Moreover, in many applications we may wish to use
shorter 64- or 128-bit keys, yet it is not clear how to extend these to a full 256-bit
GOST key securely (fill the rest with zeros, copy the bits till they cover 256 bits,
copy bits in a reversed order?).

Way THE TwisT? Consider a GOST cipher with a homogeneous key schedule,
i.e., omitting the final twist (let us denote it GOST-H). Is this cipher less se-
cure than GOST? We argue that, if one takes into account the slide attacks, it
is. GOST-H can be decomposed into four identical transforms, each consisting
of eight rounds of GOST. Furthermore, if one assumes that the round subkey
is XORed instead of being ADDed, the cipher will have 2'?® weak keys of the
form (A, B,C,D,A,B,C, D) (here each letter represents a 32-bit GOST sub-

key). These keys are weak since they allow for a sliding with a twist attack.

¥ Contrary to common belief, the standard does not even require the S-boxes to be
permutations.
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There is a known plaintext attack with 232 texts and time, and a chosen plain-
text attack with 219 texts and time; see Section 3.3 for more details.

Notice that the 2!2® keys of the form (A, B,C, D, D,C, B, A) are also weak
since GOST-H with these keys is an involution and thus double encryption will
reveal the plaintext. Since these keys are invariant under a twist the same prop-
erty holds for GOST itself. Also, there are 232 fixed points for each key of this
form, which demonstrates that there may be problems with using GOST to build
a secure hash function.

THE ATTACK ON 20 ROUNDS OF GOST@. Suppose again that the round sub-
key is XORed instead of being ADDed, (we will denote this variant of GOST as
GOSTe@). Here we show an application of sliding with a twist which results in
an attack on the last 20 rounds of GOST®.

Applying sliding with a twist, we get a picture that looks like this:

K4 I\’s I\,c, I\"7 K'o I\’l K2 K3 K4 Ks K[‘, K';- I\’T Ka Ks I\’.-l K:‘; K2 Kl KO
Ko Ky Ko Kz Ky Ks Keg Kr Ky Kg Ks Ky Ky Ko Ky Ky Ky Kg K5 K.

Let F denote 4 rounds of GOST@ with key Ky, ..., K7. With a pool of 233
known texts, we expect to find two slid pairs, and each slid pair gives two in-
put/output pairs for F. Breaking F' with two known texts is straightforward,
and can be performed in time comparable to about 29 evaluations of 4-round
GOST (equivalent to 25 20-round trial encryptions). Thus in our attack we ex-
amine all 267 text pairs; each pair suggests a value for 128 bits of key material,
which we store in a hash table (or sorted list). The right key will be suggested
twice, so we expect to be able to recognize it easily. By the birthday paradox,
there will be only about two false matches, and they can be eliminated in the
next phase.

Once we have recovered Ky, ..., K7, it is easy to learn the rest of the key in a
second analysis phase. For example, we can peel off the first four rounds and look
for fixed points in the same pool of texts. Since the round subkeys are palindromic
in the last sixteen rounds of GOST, there are 232 fixed points, and each has the
value (x, ) before the last eight rounds of encryption. Thus, given a fixed point,
we can try the 232 values of (z, ), encrypt forward and backward eight rounds,
and obtain two candidate input/output pairs for 4 rounds of GOST% with key
Ky, ..., Ks, so that a value for Kjy,..., K3 is suggested after 2° work; then the
suggested 256-bit key value is tried on another known text pair.

In all, this gives an attack on the last 20 rounds of GOST@® that needs 233
known texts, 270 work, and 2% space to recover the entire 256-bit key. Note
that this attack is generic and works for any set of (known) S-boxes. The large
memory requirements make the attack highly impractical, but we view it as a
first step towards a better understanding of the GOST design.

6 Related Work

The first step in the “sliding” direction can be dated back to a 1978 paper by
Grossman and Tuckerman [8], which has shown how to break a weakened Feistel
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cipher? by a chosen plaintext attack, independent of the number of rounds.
We were also inspired by Biham’s work on related-key cryptanalysis [1], and
Knudsen's early work [12].

Some related concepts can be found in Coppersmith’s analysis of fixed points
in DES weak keys and cycle structure of DES using these keys [5]. This analysis
was continued further by Moore and Simmons [14]. For a DES weak key, all
round subkeys are constant, and so encryption is self-inverse and fixed points are
relatively common: there are precisely 232 fixed points. Note that this property
will also be found in any Feistel cipher with palindromic round key sequences,
so the slide attack is not the only weakness of ciphers with self-similar round
subkey sequences.

7 Discussion

In this section we discuss possible extensions of slide attacks presented in this
paper and possible directions of future research.

The most obvious type of slide attack is usually easy to prevent by destroying
self-similarity in iterative ciphers, for example by adding iteration counters or
fixed random constants. However more sophisticated variants of this technique
are harder to analyze and to defend against. This paper is a first step towards
advanced slide attacks which can penetrate more complex cipher designs.

One promising new direction is the differential slide attack. By sliding two
encryptions against each other, we obtain new differential relations which in
some cases are not available in the conventional differential analysis of a cipher.
These might be very powerful, since they might for example violate the subtle
design constraints placed on the system by its designer and thus result in unex-
pected differential properties. If key-scheduling is not self-similar or symmetric,
differences in subkeys can cause constant XOR values to be introduced in the
middle of the encryption process when slid pairs are considered. (In many cases,
one can slide by different numbers of rounds and thus control the differences
to some extent.) The drawback of this method is the same as in conventional
methods: its complexity increases fast with the number of rounds, contrary to
the general sliding technique, which works for arbitrary number of rounds.
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9. MINING POOLS.

Mining Pools at DES-X: What makes the attraction?

1.  Mining Optimization: Mining Pools at DES-X are designed
to optimize the mining process, combining the integrated power
of many different mining sources. This brings diversity and
stability to the mining operation.

2. Fair Profit Sharing: By joining Mining Pools at DES-X,
miners have the opportunity to share their fair profits based on
their contribution. The profit-sharing process is ensured using fair
and transparent mechanisms.

3. Community Building Network: Mining Pools is not only a
place to participate in mining but also a platform to promote
interaction and information exchange between miners. This helps
build a community that is united, capable of learning and
interacting.

9.1: Kryptex on DES-X Exchange.

— _—

MINING POOLS

-

What makes the attraction?
Kryptex on DES-X Exchange
OKMINER Joins Trading At DES-X

F2-POOL on DES-X Exchange

Modern Mining Platform - Kryptex on DES



1.  Technological Innovation: Kryptex is more than just a
regular cryptocurrency mining software. It offers an innovative
experience through the combination of advanced mining
algorithms and a user-friendly interface.

2. Performance Optimization: One of the outstanding
advantages of Kryptex is its ability to optimize mining
performance. This tool helps to make the most of your hardware's
capabilities for the best profit.

3. Asset Diversification: Kryptex isn't just focused on a single
cryptocurrency. Instead, it supports the mining of various
cryptocurrencies, creating an opportunity to diversify profits.

4. Safety and Confidentiality: Kryptex is committed to
protecting users' information and assets. The tool uses advanced
security measures to ensure a safe and secure mining environment.

Accompanying DES with Kryptex

The partnership between Kryptex and DES Exchange creates a
unique opportunity to participate in a growing decentralized
trading system. With Kryptex, you are not only mining
cryptocurrencies but also contributing to building a futures trading
environment.

9.2: OKMINER Joins Trading At DES-X.

Mining Breakthrough With OKMINER on DES-X

1. OQutstanding Performance: OKMINER offers outstanding
mining performance with advanced and optimized equipment.
This combination helps you make the most of your mining power
for the best profit.



2. Quality and Reliability: OKMINER has made its mark with
the quality and reliability of its mining equipment. This ensures
you get a stable and seamless mining experience.

3. Diversification. OKMINER is not just focused on a single
cryptocurrency. They support the mining of various
cryptocurrencies, helping you to take advantage of the opportunity
to diversify your profits.

4.  The Future of Decentralized Finance: The combination of
OKMINER and DES-X creates a potential decentralized trading
environment. Let's join and contribute to building a decentralized
and sustainable financial future,

OKMINER has demonstrated quality and innovation in the field
of cryptocurrency mining. Join this journey at DES-X Exchange
to gain profit and participate in building a world-class
decentralized trading environment.

9.3: F2-POOL on DES-X Exchange.

Highlights of F2-POOL on DES-X

1. Diversified Mining: F2-POOL offers diversification in
mining operations. With the ability to mine multiple
cryptocurrencies, you can optimize profits from different sources
and take advantage of opportunities in the diverse market.

2. Optimizing Performance: With professionalism and
experience in the field of mining, F2-POOL helps you optimize
the performance of your mining equipment to achieve the best
profit.

3.  Safe and Transparent Transactions: F2-POOL is committed
to ensuring safety and transparency in the mining process. This
helps you to engage in trading with confidence and peace of mind.



4. Building a Breakthrough Trading Environment: F2-POOL
on DES-X is not only part of the decentralized trading
environment, but also an important part of creating a diversified
financial future. form and develop.

The partnership between F2-POOL and DES-X Exchange gives
you an opportunity to join the decentralized finance revolution.
You are not only mining cryptocurrencies, but you are also
contributing to the creation of a disruptive and diverse trading
environment.

10. MINING SOFTWARE.

Discover the Power of Mining Software on DES-X

1. Diversity of Miners: Mining Software at DES-X offers
diversity in miners. With compatibility with a wide range of
devices and cryptocurrencies, you can get the most out of your
mining potential.

2. Optimizing Performance: One of Mining Software's
strengths is its ability to optimize the performance of mining
equipment. This helps you achieve maximum performance and
maximize profits.

3. Safe and Secure Transactions: Mining Software on DES-X
IS committed to ensuring safety and security in mining activities.



You can count on the transparency and reliability of the mining
process on our platform.

10.1: BZMINER on DES-X.

The Power of BZMINER on DES-X
1. Ultimate Performance: BZMINER offers optimal mining

Discover the Power of Mining
Software on DES-X

BZMINER on DES-X

Wildrig on DES-X

Rigel - Exploring the Crypto Universe on DES-X
LOLMINER - Bringing Fun and Performance to the DES-X

performance with the ability to make the most of the power of the
mining equipment. This helps you to get the best profit from your
mining operation.

2.  Diversity of Assets: BZMINER is not limited to mining a
single cryptocurrency. Instead, the tool supports the mining of
various cryptocurrencies, providing an opportunity to diversify
your profits.

3.  Safe and Transparent Transactions: BZMINER is committed
to ensuring safety and transparency in the mining process. This
helps you to engage in trading with confidence and reliability.

4.  Building Diversified Financial Futures: The combination of
BZMINER and DES-X creates a diverse and growing mining



environment. Join us to contribute to building the future of
decentralized finance full of potential.

Are you ready to discover the power of crypto mining with
BZMINER at DES-X? Don't miss the opportunity to join a
potential and exciting mining community.

10.2: Wildrig on DES-X.

Wildridge - Discover Wild Inspiration

1. Outstanding Performance: Wildrig offers outstanding
mining performance with the ability to optimize the power of
mining equipment. This helps you to get the best profit from
cryptocurrency mining.

2.  Diversity of Assets: Wildrig is not limited to mining a single
cryptocurrency. Instead, it supports the mining of various
cryptocurrencies, providing an opportunity to diversify your
profits.

3. Safe and Reliable Transactions: Wildrig is committed to
protecting the safety and reliability of the mining process. This
helps you to engage in trading with confidence and peace of mind.

4.  Building Diversified Financial Futures: Wildrig contributes
to building a diverse and thriving mining environment on DES-X.
Join us to take advantage of crypto mining opportunities and
contribute to the future of decentralized finance.

There is a wild world waiting for you at Wildrig on the DES-X
Exchange. Join this journey to experience the wild inspiration and
maximize profits from cryptocurrency mining.

10.3: Rigel - Exploring the Crypto Universe on DES-X
Rigel - When Technology Meets the Universe



1. Super Performance: Rigel offers outstanding mining
performance with the ability to optimize the power of mining
equipment. This helps you to get maximum profit from
cryptocurrency mining.

2.  Asset Diversification: Rigel is not limited to mining a single
cryptocurrency. Instead, it supports the mining of various
cryptocurrencies, providing an opportunity to diversify your
profits.

3.  Safe and Reliable: Rigel is committed to ensuring safety and
reliability during mining. This helps you to engage in trading with
confidence and peace of mind.

4.  Building Diversified Financial Futures: Rigel contributes to
building a diverse and thriving mining environment at DES-X.
Join us to take advantage of crypto mining opportunities and
contribute to the future of decentralized finance.

The crypto universe awaits you at Rigel on the DES-X Exchange.
Join this journey to experience the fusion of technology and
explore the crypto universe.

10.4: LOLMINER - Bringing Fun and Performance to
the DES-X.

LOLMINER - Bringing Fun to Mining

1.  OQutstanding Performance: LOLMINER offers outstanding
mining performance with the ability to optimize the power of
mining equipment. This helps you to get maximum profit from
cryptocurrency mining.

2. Asset Diversification: LOLMINER is not limited to mining
a single cryptocurrency. Instead, it supports the mining of various



cryptocurrencies, helping you to take advantage of the opportunity
to diversify your profits.

3. Safe and Reliable Transactions: LOLMINER is committed
to protecting the safety and reliability of the mining process. This
helps you to engage in trading with confidence and peace of mind.

4.  Building Diversified Financial Futures: The combination of
LOLMINER and DES-X creates a diverse and growing mining
environment. Join us to take advantage of crypto mining
opportunities and contribute to the future of decentralized finance.

With LOLMINER on the DES-X Exchange, you are not only
mining cryptocurrencies but also embarking on a fun and
challenging journey. Get ready to explore the new world of
cryptocurrency mining with a combination of fun and
performance.

11. Benefits of DES-X exchange participants.

DES-X Exchange is not only a place to trade cryptocurrencies, but
also a diverse and potential community. In this article, we will go
over the outstanding benefits that participants can experience



when participating in DES-X's unique decentralized trading
environment.

11.1: Diversified Profits

BENEFITS OF DES-X
EXCHANGE
PARTICIPANTS

FUTURE OF TOKEN

Participants of the DES-X exchange have the opportunity to take
advantage of profit diversification through cryptocurrency
mining, trading, and other financial activities. Depending on each
person's goals and knowledge, profits can come from mining,
investing, staking, or yield farming.

11.2: Effective Exploitation

DES-X exchange cooperates with leading mining providers like
OKMINER, F2-POOL, Wildridge, and many more. This helps
participants make the most of the performance of their mining
devices, achieving optimal profits and efficient mining.

11.3: Decentralized Finance

By participating in DES-X, participants contribute to the
development of the decentralized financial environment. They
have the opportunity to participate in the construction of a



decentralized financial future and create a safe and transparent
trading environment.

11.4: Safe Trading Environment.

DES-X exchange is committed to protecting safety and ensuring
transparency in the trading and mining process. Participants can
be assured of the security of their assets and personal information.

11.5: Learning Opportunities.

Participants of the DES-X exchange have the opportunity to learn
from experts in the field of cryptocurrencies and decentralized
finance. They can access instructional materials, and learn how to
mine, trade, and manage assets intelligently and efficiently.

11.6: Diverse Community

DES-X is a diverse community that attracts cryptocurrency and
decentralized finance enthusiasts from around the world.
Participants have the opportunity to network, learn and share
experiences with people with similar interests.

11.7: Growth Potential

With the continuous development of cryptocurrencies and
decentralized finance, participants of the DES-X exchange have
the opportunity to enter an area with strong growth potential in the
future,



12. Invite Friends Program.

Reward yourself and help your friends! Internet income is
unlimited, with an advanced muli-level bonus mechanism DESX
Bonuses are distributed instantly and processed fully
automatically by a smart contract. The multi-level bounty
mechanism on the blockchain is consistent with infallible logic.

Referral rewards

With a commission rate of 10% for each invite from level 1.
With a commission rate of 08% for each invite from level 2.
With a commission rate of 07% for each invite from level 3.
With a commission rate of 06% for each invite from level 4.
With a commission rate of 05% for each invite from level 5.
With a commission rate of 04% for each invite from level 6.
With a commission rate of 03% for each invite from level 7.
With a commission rate of 02% for each invite from level 8.

! MAX LEVEL = 45% COMMISSION

Level 8 -2% 45%
Level 7 -- 3% > 43%
Level 6 --- 4% > 40%
Level 5 ----- 5% > 36%
Level 4 ------- 6% — A%
Level 3 -----=---- T% 25%
e S . [N

Level ]l --------mmmmmmmmmme e 10% » 10%




NOTICE AND DISCLAIMER

PLEASE READ THE ENTIRETY OF THIS "NOTICE AND
DISCLAIMER" SECTION CAREFULLY. NOTHING HEREIN
CONSTITUTES LEGAL, FINANCIAL, BUSINESS, OR TAX
ADVICE AND YOU SHOULD CONSULT YOUR OWN
LEGAL, FINANCIAL, TAX, OR OTHER PROFESSIONAL
ADVISOR(S) BEFORE ENGAGING IN ANY ACTIVITY IN
CONNECTION HEREWITH. NOR ANY SERVICE
PROVIDER SHALL BE LIABLE FOR ANY KIND OF DIRECT
OR INDIRECT DAMAGE OR LOSS WHATSOEVER WHICH
YOU MAY SUFFER IN CONNECTION WITH ACCESSING
THIS WHITEPAPER, THE WEBSITE AT https://des-x.io/(THE
WEBSITE) OR ANY OTHER WEBSITES OR MATERIALS
PUBLISHED BY THE FOUNDATION.

Nature of the Whitepaper: The Whitepaper and the Website are
intended for general informational purposes only and do not
constitute a prospectus, an offer document, an offer of securities,
a solicitation for investment, or any offer to sell any product, item,
or asset (whether digital or otherwise). The information herein
may not be exhaustive and does not imply any element of a
contractual relationship. There is no assurance as to the accuracy
or completeness of such information and no representation,
warranty, or undertaking is or purported to be provided as to the
accuracy or completeness of such information. Where the
Whitepaper or the Website includes information that has been
obtained from third-party sources, the Foundation, the Distributor,
their respective affiliates, and/or the DESX team have not
independently verified the accuracy or completion of such
information. Further, you acknowledge that circumstances may
change and that the Whitepaper or the Website may become
outdated as a result; and neither the Foundation nor the Distributor



IS under any obligation to update or correct this document in
connection therewith.



